From 41e2742350ebc47bfba4ecb790a0ec1f3b3a067c Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 9 Dec 2024 22:31:04 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- docs/tutorial.ipynb | 10 +++++----- velovi/_model.py | 19 ++++++++++++------- velovi/_module.py | 3 +++ velovi/_utils.py | 1 + 4 files changed, 21 insertions(+), 12 deletions(-) diff --git a/docs/tutorial.ipynb b/docs/tutorial.ipynb index 15cdf41..ebf0f5a 100644 --- a/docs/tutorial.ipynb +++ b/docs/tutorial.ipynb @@ -507,7 +507,7 @@ ], "source": [ "sc.pl.umap(\n", - " adata, \n", + " adata,\n", " color=\"directional_cosine_sim_variance\",\n", " cmap=\"Greys\",\n", " vmin=\"p1\",\n", @@ -537,7 +537,7 @@ " extrapolated_cells_list = []\n", " for i in track(range(n_samples)):\n", " with io.StringIO() as buf, redirect_stdout(buf):\n", - " vkey = \"velocities_velovi_{i}\".format(i=i)\n", + " vkey = f\"velocities_velovi_{i}\"\n", " v = vae.get_velocity(n_samples=1, velo_statistic=\"mean\")\n", " adata.layers[vkey] = v\n", " scv.tl.velocity_graph(adata, vkey=vkey, sqrt_transform=False, approx=True)\n", @@ -1134,10 +1134,10 @@ ], "source": [ "sc.pl.umap(\n", - " adata, \n", + " adata,\n", " color=\"directional_cosine_sim_variance_extrinisic\",\n", - " vmin=\"p1\", \n", - " vmax=\"p99\", \n", + " vmin=\"p1\",\n", + " vmax=\"p99\",\n", ")" ] }, diff --git a/velovi/_model.py b/velovi/_model.py index df8ee5d..a62415c 100644 --- a/velovi/_model.py +++ b/velovi/_model.py @@ -49,6 +49,7 @@ class VELOVI(VAEMixin, UnsupervisedTrainingMixin, BaseModelClass): Use a linear decoder from latent space to time. **model_kwargs Keyword args for :class:`~velovi.VELOVAE` + """ def __init__( @@ -108,13 +109,8 @@ def __init__( **model_kwargs, ) self._model_summary_string = ( - "VELOVI Model with the following params: \nn_hidden: {}, n_latent: {}, n_layers: {}, dropout_rate: " - "{}" - ).format( - n_hidden, - n_latent, - n_layers, - dropout_rate, + f"VELOVI Model with the following params: \nn_hidden: {n_hidden}, n_latent: {n_latent}, n_layers: {n_layers}, dropout_rate: " + f"{dropout_rate}" ) self.init_params_ = self._get_init_params(locals()) @@ -164,6 +160,7 @@ def train( `train()` will overwrite values present in `plan_kwargs`, when appropriate. **trainer_kwargs Other keyword args for :class:`~scvi.train.Trainer`. + """ user_plan_kwargs = plan_kwargs.copy() if isinstance(plan_kwargs, dict) else {} plan_kwargs = {"lr": lr, "weight_decay": weight_decay, "optimizer": "AdamW"} @@ -238,6 +235,7 @@ def get_state_assignment( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) scdl = self._make_data_loader( @@ -342,6 +340,7 @@ def get_latent_time( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) if indices is None: @@ -484,6 +483,7 @@ def get_velocity( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) if indices is None: @@ -658,6 +658,7 @@ def get_expression_fit( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) @@ -813,6 +814,7 @@ def get_gene_likelihood( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) scdl = self._make_data_loader( @@ -919,6 +921,7 @@ def setup_anndata( Returns ------- %(returns)s + """ setup_method_args = cls._get_setup_method_args(**locals()) anndata_fields = [ @@ -969,6 +972,7 @@ def get_permutation_scores( ------- Tuple of DataFrame and AnnData. DataFrame is genes by cell types with score per cell type. AnnData is the permutated version of the original AnnData. + """ adata = self._validate_anndata(adata) adata_manager = self.get_anndata_manager(adata) @@ -1092,6 +1096,7 @@ def _directional_statistics_per_cell( ---------- tensor Shape of samples by genes for a given cell. + """ n_samples = tensor.shape[0] # over samples axis diff --git a/velovi/_module.py b/velovi/_module.py index 2515b16..9a7ec9a 100644 --- a/velovi/_module.py +++ b/velovi/_module.py @@ -1,4 +1,5 @@ """Main module.""" + from typing import Callable, Iterable, Literal, Optional import numpy as np @@ -44,6 +45,7 @@ class DecoderVELOVI(nn.Module): Whether to use layer norm in layers linear_decoder Whether to use linear decoder for time + """ def __init__( @@ -183,6 +185,7 @@ class VELOVAE(BaseModuleClass): var_activation Callable used to ensure positivity of the variational distributions' variance. When `None`, defaults to `torch.exp`. + """ def __init__( diff --git a/velovi/_utils.py b/velovi/_utils.py index bfffbeb..d16cc48 100644 --- a/velovi/_utils.py +++ b/velovi/_utils.py @@ -56,6 +56,7 @@ def preprocess_data( Returns ------- Preprocessed adata. + """ if min_max_scale: scaler = MinMaxScaler()