diff --git a/popv/algorithms/_bbknn.py b/popv/algorithms/_bbknn.py index 8147cc7..81639fe 100644 --- a/popv/algorithms/_bbknn.py +++ b/popv/algorithms/_bbknn.py @@ -13,7 +13,7 @@ def __init__( labels_key: str | None = "_labels_annotation", result_key: str | None = "popv_knn_on_bbknn_prediction", embedding_key: str | None = "X_bbknn_umap_popv", - #method_dict: dict | None = None, + method_dict: dict | None = None, classifier_dict: dict | None = None, embedding_dict: dict | None = None, ) -> None: diff --git a/popv/preprocessing.py b/popv/preprocessing.py index 0be89de..eb1d860 100644 --- a/popv/preprocessing.py +++ b/popv/preprocessing.py @@ -207,20 +207,20 @@ def __init__( f"{self.cl_obo_file} doesn't exist. Check that folder exists." ) from FileNotFoundError - self.check_validity_anndata(self.query_adata, "query") - self.setup_dataset(self.query_adata, "query", add_meta="_query") + self._check_validity_anndata(self.query_adata, "query") + self._setup_dataset(self.query_adata, "query", add_meta="_query") if self.prediction_mode != "fast": if self.genes: self.ref_adata = ref_adata[:, self.genes].copy() else: self.ref_adata = ref_adata.copy() - self.setup_dataset(self.ref_adata, "reference") - self.check_validity_anndata(self.ref_adata, "reference") + self._setup_dataset(self.ref_adata, "reference") + self._check_validity_anndata(self.ref_adata, "reference") - self.preprocess() + self._preprocess() - def check_validity_anndata(self, adata, input_type): + def _check_validity_anndata(self, adata, input_type): assert check_nonnegative_integers( adata.X ), f"Make sure input {input_type} adata contains raw_counts" @@ -230,7 +230,7 @@ def check_validity_anndata(self, adata, input_type): assert adata.n_obs > 0, f"{input_type} anndata has no cells." assert adata.n_vars > 0, f"{input_type} anndata has no genes." - def setup_dataset(self, adata, key, add_meta=""): + def _setup_dataset(self, adata, key, add_meta=""): if isinstance(self.batch_key[key], list): adata.obs["_batch_annotation"] = ( adata.obs[self.batch_key[key]].astype(str).sum(1).astype("category") @@ -268,7 +268,7 @@ def setup_dataset(self, adata, key, add_meta=""): else: adata.obs["_ref_subsample"] = False - def preprocess(self): + def _preprocess(self): if self.genes is None: self.ref_adata = self.ref_adata[ :, np.intersect1d(self.ref_adata.var_names, self.query_adata.var_names)