-
Notifications
You must be signed in to change notification settings - Fork 12
/
generator.py
95 lines (70 loc) · 2.75 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Walk-Assistant : Recognizing sidewalk for the visually impaired
Copyright (C) 2018 Yoongi Kim ([email protected])
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import glob
import random
from data_loader import DataLoader
import numpy as np
from keras.utils import to_categorical
import cv2
class Generator:
def __init__(self, data_dir, label_path, tile_row=9, tile_col=16, batch_size=32):
self.data_dir = data_dir
self.batch_size = batch_size
self.files, self.labels = self.read_label_file(label_path, h=tile_row, w=tile_col)
def read_label_file(self, path, h, w):
with open(path, 'r') as f:
lines = f.readlines()
files = []
labels = []
for line in lines:
line = line.replace('\n', '')
file_name, label_encode = line.split(',')
label = []
for b in label_encode:
label.append(int(b))
files.append('{}/{}'.format(self.data_dir, file_name))
labels.append(np.array(label).reshape((h, w)))
return np.array(files), np.array(labels)
def get_XY(self, indexes):
X = []
Y = []
for index in indexes:
X.append(DataLoader.read_image(self.files[index]))
Y.append(self.labels[index])
return np.array(X, dtype=np.float32)/255.0, to_categorical(np.array(Y, dtype=np.float32), 2)
def generator(self):
while True:
pos = 0
indexes = [i for i in range(len(self.files))]
random.shuffle(indexes)
while pos + self.batch_size <= len(self.files):
X, Y = self.get_XY(indexes[pos:pos + self.batch_size])
pos += self.batch_size
yield (X, Y)
if __name__ == "__main__":
import matplotlib.pyplot as plt
import shutil
import os
gen = Generator('H:/Workspaces/Walk-Assistant/data/frames', 'data/label.txt', batch_size=1)
for file in gen.files:
if os.path.exists(file):
shutil.copy2(file, 'data/frames')
print(file)
# for x, y in gen.generator():
# print(x)
# plt.imshow(x[0])
# plt.show()
# print(y)
# input()