forked from benathi/word2gm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
word2gm_trainer.py
595 lines (489 loc) · 22.3 KB
/
word2gm_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
"""
Ben Athiwaratkun
Training code for Gaussian Mixture word embeddings model
Adapted from tensorflow's word2vec.py
(https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec.py)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import threading
import time
import math
# Retrict to CPU only
os.environ["CUDA_VISIBLE_DEVICES"]=""
from six.moves import xrange # pylint: disable=redefined-builtin
import numpy as np
import tensorflow as tf
#from tensorflow.models.embedding import gen_word2vec as word2vec
#word2vec = tf.load_op_library(os.path.join(os.path.di))
word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
flags = tf.app.flags
flags.DEFINE_string("save_path", None, "Directory to write the model and "
"training summaries. (required)")
flags.DEFINE_string("train_data", None, "Training text file. (required)")
flags.DEFINE_integer("embedding_size", 50, "The embedding dimension size.")
flags.DEFINE_integer(
"epochs_to_train", 5,
"Number of epochs to train. Each epoch processes the training data once "
"completely.")
flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.")
flags.DEFINE_integer("batch_size", 256,
"Number of training examples processed per step "
"(size of a minibatch).")
flags.DEFINE_integer("concurrent_steps", 12,
"The number of concurrent training steps.")
flags.DEFINE_integer("window_size", 5,
"The number of words to predict to the left and right "
"of the target word.")
flags.DEFINE_integer("min_count", 5,
"The minimum number of word occurrences for it to be "
"included in the vocabulary.")
flags.DEFINE_float("subsample", 1e-3,
"Subsample threshold for word occurrence. Words that appear "
"with higher frequency will be randomly down-sampled. Set "
"to 0 to disable.")
flags.DEFINE_integer("statistics_interval", 5,
"Print statistics every n seconds.")
flags.DEFINE_integer("summary_interval", 5,
"Save training summary to file every n seconds (rounded "
"up to statistics interval).")
flags.DEFINE_integer("checkpoint_interval", 600,
"Checkpoint the model (i.e. save the parameters) every n "
"seconds (rounded up to statistics interval).")
flags.DEFINE_integer("num_mixtures", 2,
"Number of mixture component for Mixture of Gaussians")
flags.DEFINE_boolean("spherical", False,
"Whether the model should be spherical of diagonal"
"The default is spherical")
flags.DEFINE_float("var_scale", 0.05, "Variance scale")
flags.DEFINE_boolean("ckpt_all", False, "Keep all checkpoints"
"(Warning: This requires a large amount of disk space).")
flags.DEFINE_float("norm_cap", 3.0,
"The upper bound of norm of mean vector")
flags.DEFINE_float("lower_sig", 0.02,
"The lower bound for sigma element-wise")
flags.DEFINE_float("upper_sig", 5.0,
"The upper bound for sigma element-wise")
flags.DEFINE_float("mu_scale", 1.0,
"The average norm will be around mu_scale")
flags.DEFINE_float("objective_threshold", 1.0,
"The threshold for the objective")
flags.DEFINE_boolean("adagrad", False,
"Use Adagrad optimizer instead")
flags.DEFINE_float("loss_epsilon", 1e-4,
"epsilon parameter for loss function")
flags.DEFINE_boolean("constant_lr", False,
"Use constant learning rate")
flags.DEFINE_boolean("wout", False,
"Whether we would use a separate wout")
flags.DEFINE_boolean("max_pe", False,
"Using maximum of partial energy instead of the sum")
flags.DEFINE_integer("max_to_keep", 5,
"The maximum number of checkpoint files to keep")
flags.DEFINE_boolean("normclip", False,
"Whether to perform norm clipping (very slow)")
flags.DEFINE_string("rep", "gm", 'The type of representation. Either gm or vec')
flags.DEFINE_integer("fixvar", 0, "whether to fix the variance or not")
FLAGS = flags.FLAGS
class Options(object):
"""Options used by our Word2MultiGauss model."""
def __init__(self):
# Model options.
# Embedding dimension.
self.emb_dim = FLAGS.embedding_size
# Training options.
# The training text file.
self.train_data = FLAGS.train_data
# The initial learning rate.
self.learning_rate = FLAGS.learning_rate
# Number of epochs to train. After these many epochs, the learning
# rate decays linearly to zero and the training stops.
self.epochs_to_train = FLAGS.epochs_to_train
# Concurgnt training steps.
self.concurrent_steps = FLAGS.concurrent_steps
# Number of examples for one training step.
self.batch_size = FLAGS.batch_size
# The number of words to predict to the left and right of the target word.
self.window_size = FLAGS.window_size
# The minimum number of word occurrences for it to be included in the
# vocabulary.
self.min_count = FLAGS.min_count
# Subsampling threshold for word occurrence.
self.subsample = FLAGS.subsample
# How often to print statistics.
self.statistics_interval = FLAGS.statistics_interval
# How often to write to the summary file (rounds up to the nearest
# statistics_interval).
self.summary_interval = FLAGS.summary_interval
# How often to write checkpoints (rounds up to the nearest statistics
# interval).
self.checkpoint_interval = FLAGS.checkpoint_interval
# Where to write out summaries.
self.save_path = FLAGS.save_path
#################################
self.num_mixtures = FLAGS.num_mixtures # incorporated. needs testing
# upper bound of norm of mu
self.norm_cap = FLAGS.norm_cap
# element-wise lower bound for sigma
self.lower_sig = FLAGS.lower_sig
# element-wise upper bound for sigma
self.upper_sig = FLAGS.upper_sig
# whether to use spherical or diagonal covariance
self.spherical = FLAGS.spherical ## default to False please
self.var_scale = FLAGS.var_scale
self.ckpt_all = FLAGS.ckpt_all
self.mu_scale = FLAGS.mu_scale
self.objective_threshold = FLAGS.objective_threshold
self.adagrad = FLAGS.adagrad
self.loss_epsilon = FLAGS.loss_epsilon
self.constant_lr = FLAGS.constant_lr
self.wout = FLAGS.wout
self.max_pe = FLAGS.max_pe
self.max_to_keep = FLAGS.max_to_keep
self.normclip = FLAGS.normclip
## value clipping
self.norm_cap = FLAGS.norm_cap
self.upper_sig = FLAGS.upper_sig
self.lower_sig = FLAGS.lower_sig
self.rep = FLAGS.rep
self.fixvar = FLAGS.fixvar
class Word2GMtrainer(object):
def __init__(self, options, session):
self._options = options
# Ben A: print important opts
opts = options
print('--------------------------------------------------------')
print('Rep {}'.format(opts.rep))
print('Train data {}'.format(opts.train_data))
print('Norm cap {} lower sig {} upper sig {}'.format(opts.norm_cap,
opts.lower_sig, opts.upper_sig))
print('mu_scale {} var_scale {}'.format(opts.mu_scale, opts.var_scale))
print('Num Mixtures {} Spherical Mode = {}'.format(opts.num_mixtures, opts.spherical))
print('Emb dim {}'.format(opts.emb_dim))
print('Epochs to train {}'.format(opts.epochs_to_train))
print('Learning rate {} // constant {}'.format(opts.learning_rate, opts.constant_lr))
print('Using a separate Wout = {}'.format(opts.wout))
print('Subsampling rate = {}'.format(opts.subsample))
print('Using Max Partial Energy Loss = {}'.format(opts.max_pe))
print('Loss Epsilon = {}'.format(opts.loss_epsilon))
print('Saving results to = {}'.format(options.save_path))
print('--------------------------------------------------------')
self._session = session
self._word2id = {}
self._id2word = []
self.build_graph() #
self.save_vocab()
def optimize(self, loss):
"""Build the graph to optimize the loss function."""
# Optimizer nodes.
# Linear learning rate decay.
opts = self._options
if opts.constant_lr:
self._lr = tf.constant(opts.learning_rate)
else:
words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
lr = opts.learning_rate * tf.maximum(
0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train)
self._lr = lr
optimizer = tf.train.GradientDescentOptimizer(self._lr)
train = optimizer.minimize(loss,
global_step=self.global_step,
gate_gradients=optimizer.GATE_NONE)
self._train = train
def optimize_adam(self, loss):
# deprecated
opts = self._options
# use automatic decay of learning rate in Adam
self._lr = tf.constant(opts.learning_rate)
self.adam_epsilon = opts.adam_epsilon
optimizer = tf.train.AdamOptimizer(self._lr, epsilon=self.adam_epsilon)
train = optimizer.minimize(loss, global_step=self.global_step,
gate_gradients=optimizer.GATE_NONE)
self._train = train
def optimize_adagrad(self, loss):
print('Using Adagrad optimizer')
opts = self._options
if opts.constant_lr:
self._lr = tf.constant(opts.learning_rate)
else:
words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
lr = opts.learning_rate * tf.maximum(
0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train)
self._lr = lr
optimizer = tf.train.AdagradOptimizer(self._lr)
train = optimizer.minimize(loss,
global_step=self.global_step,
gate_gradients=optimizer.GATE_NONE)
self._train = train
def calculate_loss(self, word_idxs, pos_idxs):
# This is two methods in one (forward and nce_loss)
self.global_step = tf.Variable(0, name="global_step")
opts = self._options
#####################################################
# the model parameters
vocabulary_size = opts.vocab_size
embedding_size = opts.emb_dim
batch_size = opts.batch_size
norm_cap = opts.norm_cap
lower_sig = opts.lower_sig
upper_sig = opts.upper_sig
self.norm_cap = norm_cap
self.lower_logsig = math.log(lower_sig)
self.upper_logsig = math.log(upper_sig)
num_mixtures = opts.num_mixtures
spherical = opts.spherical
objective_threshold = opts.objective_threshold
# the model parameters
mu_scale = opts.mu_scale*math.sqrt(3.0/(1.0*embedding_size))
mus = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures, embedding_size], -mu_scale, mu_scale), name='mu')
if opts.wout:
mus_out = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures, embedding_size], -mu_scale, mu_scale), name='mu_out')
# This intialization makes the variance around 1
var_scale = opts.var_scale
logvar_scale = math.log(var_scale)
print('mu_scale = {} var_scale = {}'.format(mu_scale, var_scale))
var_trainable = 1-self._options.fixvar
print('var trainable =', var_trainable)
if spherical:
logsigs = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures,1],
logvar_scale, logvar_scale), name='sigma', trainable=var_trainable)
if opts.wout:
logsigs_out = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures,1],
logvar_scale, logvar_scale), name='sigma_out', trainable=var_trainable)
else:
logsigs = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures, embedding_size],
logvar_scale, logvar_scale), name='sigma', trainable=var_trainable)
if opts.wout:
logsigs_out = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures, embedding_size],
logvar_scale, logvar_scale), name='sigma_out', trainable=var_trainable)
mixture = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures], 0, 0), name='mixture')
if opts.wout:
mixture_out = tf.Variable(tf.random_uniform([vocabulary_size, num_mixtures], 0, 0), name='mixture_out')
if not opts.wout:
mus_out = mus
logsigs_out = logsigs
mixture_out = mixture
zeros_vec = tf.zeros([batch_size], name='zeros')
self._mus = mus
self._logsigs = logsigs
labels_matrix = tf.reshape(
tf.cast(pos_idxs,
dtype=tf.int64),
[opts.batch_size, 1])
# Negative sampling.
neg_idxs, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
true_classes=labels_matrix,
num_true=1,
num_sampled=opts.batch_size, # Use 1 negative sample per positive sample
unique=True,
range_max=opts.vocab_size,
distortion=0.75,
unigrams=opts.vocab_counts.tolist(), name='neg_idxs'))
self._neg_idxs = neg_idxs
def log_energy(mu1, sig1, mix1, mu2, sig2, mix2):
### need to pass mix that's compatible!
def partial_logenergy(cl1, cl2):
m1 = mu1[:,cl1,:]
m2 = mu2[:,cl2,:]
s1 = sig1[:,cl1,:]
s2 = sig2[:,cl2,:]
with tf.name_scope('partial_logenergy') as scope:
_a = tf.add(s1, s2) # should be do max add for stability?
epsilon = opts.loss_epsilon
if spherical:
logdet = embedding_size*tf.log(epsilon + tf.squeeze(_a))
else:
logdet = tf.reduce_sum(tf.log(epsilon + _a), reduction_indices=1, name='logdet')
ss_inv = 1./(epsilon + _a)
#diff = tf.sub(m1, m2)
diff = tf.subtract(m1, m2)
exp_term = tf.reduce_sum(diff*ss_inv*diff, reduction_indices=1, name='expterm')
pe = -0.5*logdet - 0.5*exp_term
return pe
with tf.name_scope('logenergy') as scope:
log_e_list = []
mix_list = []
for cl1 in xrange(num_mixtures):
for cl2 in xrange(num_mixtures):
log_e_list.append(partial_logenergy(cl1, cl2))
mix_list.append(mix1[:,cl1]*mix2[:,cl2])
log_e_pack = tf.stack(log_e_list)
log_e_max = tf.reduce_max(log_e_list, reduction_indices=0)
if opts.max_pe:
# Ben A: got this warning for max_pe
# UserWarning:
# Convering sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
log_e_argmax = tf.argmax(log_e_list, dimension=0)
log_e = log_e_max*tf.gather(mix_list, log_e_argmax)
else:
mix_pack = tf.stack(mix_list)
log_e = tf.log(tf.reduce_sum(mix_pack*tf.exp(log_e_pack-log_e_max), reduction_indices=0))
log_e += log_e_max
return log_e
def Lfunc(word_idxs, pos_idxs, neg_idxs):
with tf.name_scope('LossCal') as scope:
mu_embed = tf.nn.embedding_lookup(mus, word_idxs, name='MuWord')
mu_embed_pos = tf.nn.embedding_lookup(mus_out, pos_idxs, name='MuPos')
mu_embed_neg = tf.nn.embedding_lookup(mus_out, neg_idxs, name='MuNeg')
sig_embed = tf.exp(tf.nn.embedding_lookup(logsigs, word_idxs), name='SigWord')
sig_embed_pos = tf.exp(tf.nn.embedding_lookup(logsigs_out, pos_idxs), name='SigPos')
sig_embed_neg = tf.exp(tf.nn.embedding_lookup(logsigs_out, neg_idxs), name='SigNeg')
mix_word = tf.nn.softmax(tf.nn.embedding_lookup(mixture, word_idxs), name='MixWord')
mix_pos = tf.nn.softmax(tf.nn.embedding_lookup(mixture_out, pos_idxs), name='MixPos')
mix_neg = tf.nn.softmax(tf.nn.embedding_lookup(mixture_out, neg_idxs), name='MixNeg')
epos = log_energy(mu_embed, sig_embed, mix_word, mu_embed_pos, sig_embed_pos, mix_pos)
eneg = log_energy(mu_embed, sig_embed, mix_word, mu_embed_neg, sig_embed_neg, mix_neg)
loss_indiv = tf.maximum(zeros_vec, objective_threshold - epos + eneg, name='CalculateIndividualLoss')
loss = tf.reduce_mean(loss_indiv, name='AveLoss')
return loss
loss = Lfunc(word_idxs, pos_idxs, neg_idxs)
tf.summary.scalar('loss', loss)
return loss
def clip_ops_graph(self, word_idxs, pos_idxs, neg_idxs):
def clip_val_ref(embedding, idxs):
with tf.name_scope('clip_val'):
to_update = tf.nn.embedding_lookup(embedding, idxs)
to_update = tf.maximum(self.lower_logsig, tf.minimum(self.upper_logsig, to_update))
return tf.scatter_update(embedding, idxs, to_update)
def clip_norm_ref(embedding, idxs):
with tf.name_scope('clip_norm_ref') as scope:
to_update = tf.nn.embedding_lookup(embedding, idxs)
to_update = tf.clip_by_norm(to_update, self.norm_cap, axes=2)
return tf.scatter_update(embedding, idxs, to_update)
clip1 = clip_norm_ref(self._mus, word_idxs)
clip2 = clip_norm_ref(self._mus, pos_idxs)
clip3 = clip_norm_ref(self._mus, neg_idxs)
clip4 = clip_val_ref(self._logsigs, word_idxs)
clip5 = clip_val_ref(self._logsigs, pos_idxs)
clip6 = clip_val_ref(self._logsigs, neg_idxs)
return [clip1, clip2, clip3, clip4, clip5, clip6]
def build_graph(self):
"""Build the graph for the full model."""
opts = self._options
# The training data. A text file.
(words, counts, words_per_epoch, self._epoch, self._words, examples,
labels) = word2vec.skipgram_word2vec(filename=opts.train_data,
batch_size=opts.batch_size,
window_size=opts.window_size,
min_count=opts.min_count,
subsample=opts.subsample)
(opts.vocab_words, opts.vocab_counts,
opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
opts.vocab_size = len(opts.vocab_words)
print("Data file: ", opts.train_data)
print("Vocab size: ", opts.vocab_size - 1, " + UNK")
print("Words per epoch: ", opts.words_per_epoch)
self._examples = examples
self._labels = labels
self._id2word = opts.vocab_words
for i, w in enumerate(self._id2word):
self._word2id[w] = i
loss = self.calculate_loss(examples, labels)
self._loss = loss
if opts.normclip:
self._clip_ops = self.clip_ops_graph(self._examples, self._labels, self._neg_idxs)
if opts.adagrad:
print("Using Adagrad as an optimizer!")
self.optimize_adagrad(loss)
else:
# Using Standard SGD
self.optimize(loss)
# Properly initialize all variables.
self.check_op = tf.add_check_numerics_ops()
tf.initialize_all_variables().run()
try:
print('Try using saver version v2')
self.saver = tf.train.Saver(write_version=tf.train.SaverDef.V2, max_to_keep = opts.max_to_keep)
except:
print('Default to saver version v1')
self.saver = tf.train.Saver(max_to_keep=opts.max_to_keep)
def save_vocab(self):
"""Save the vocabulary to a file so the model can be reloaded."""
opts = self._options
with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
for i in xrange(opts.vocab_size):
vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8")
f.write("%s %d\n" % (vocab_word,
opts.vocab_counts[i]))
def _train_thread_body(self):
initial_epoch, = self._session.run([self._epoch])
while True:
# This is where the optimizer that minimizes loss (self._train) is run
if not self._options.normclip:
_, epoch = self._session.run([self._train, self._epoch])
else:
_, epoch, _ = self._session.run([self._train, self._epoch, self._clip_ops])
if epoch != initial_epoch:
break
def train(self):
"""Train the model."""
opts = self._options
initial_epoch, initial_words = self._session.run([self._epoch, self._words])
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(opts.save_path, self._session.graph)
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
last_words, last_time, last_summary_time = initial_words, time.time(), 0
last_checkpoint_time = 0
step_manual = 0
while True:
time.sleep(opts.statistics_interval) # Reports our progress once a while.
(epoch, step, loss, words, lr) = self._session.run(
[self._epoch, self.global_step, self._loss, self._words, self._lr])
now = time.time()
last_words, last_time, rate = words, now, (words - last_words) / (
now - last_time)
print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" %
(epoch, step, lr, loss, rate), end="")
sys.stdout.flush()
if now - last_summary_time > opts.summary_interval:
summary_str = self._session.run(summary_op)
summary_writer.add_summary(summary_str, step)
last_summary_time = now
if now - last_checkpoint_time > opts.checkpoint_interval:
self.saver.save(self._session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=step.astype(int))
last_checkpoint_time = now
if epoch != initial_epoch:
break
step_manual += 1
for t in workers:
t.join()
return epoch
def _start_shell(local_ns=None):
# An interactive shell is useful for debugging/development.
import IPython
user_ns = {}
if local_ns:
user_ns.update(local_ns)
user_ns.update(globals())
IPython.start_ipython(argv=[], user_ns=user_ns)
def main(_):
if not FLAGS.train_data or not FLAGS.save_path:
print("--train_data and --save_path must be specified.")
sys.exit(1)
if not os.path.exists(FLAGS.save_path):
print('Creating new directory', FLAGS.save_path)
os.makedirs(FLAGS.save_path)
else:
print('The directory already exists', FLAGS.save_path)
opts = Options()
print('Saving results to {}'.format(opts.save_path))
with tf.Graph().as_default(), tf.Session() as session:
with tf.device("/cpu:0"):
model = Word2GMtrainer(opts, session)
for _ in xrange(opts.epochs_to_train):
model.train()
# Perform a final save.
model.saver.save(session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if __name__ == "__main__":
tf.app.run()