-
Notifications
You must be signed in to change notification settings - Fork 6
/
lsgn_evaluator.py
210 lines (175 loc) · 8.49 KB
/
lsgn_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import datetime
import time
import coref_metrics
import debug_utils
import inference_utils
from input_utils import pad_batch_tensors
import operator
import srl_eval_utils
import util
class LSGNEvaluator(object):
def __init__(self, config):
self.config = config
self.eval_data = None
# TODO: Split to multiple functions.
def evaluate(self, session, data, predictions, loss, official_stdout=False):
if self.eval_data is None:
self.eval_data, self.eval_tensors, self.coref_eval_data = data.load_eval_data()
def _k_to_tag(k):
if k == -3:
return "oracle"
elif k == -2:
return "actual"
elif k == -1:
return "exact"
elif k == 0:
return "threshold"
else:
return "{}%".format(k)
# Retrieval evaluators.
arg_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 30, 40, 50, 80, 100, 120, 150] }
predicate_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70] }
mention_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50] }
entity_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70] }
total_loss = 0
total_num_predicates = 0
total_gold_predicates = 0
srl_comp_sents = 0
srl_predictions = []
ner_predictions = []
rel_predictions = []
coref_predictions = {}
coref_evaluator = coref_metrics.CorefEvaluator()
all_gold_predicates = []
all_guessed_predicates = []
start_time = time.time()
debug_printer = debug_utils.DebugPrinter()
# Simple analysis.
unique_core_role_violations = 0
continuation_role_violations = 0
reference_role_violations = 0
gold_u_violations = 0
gold_c_violations = 0
gold_r_violations = 0
# Global sentence ID.
rel_sent_id = 0
srl_sent_id = 0
for i, doc_tensors in enumerate(self.eval_tensors):
feed_dict = dict(list(zip(
data.input_tensors,
[pad_batch_tensors(doc_tensors, tn) for tn in data.input_names + data.label_names])))
predict_names = []
for tn in data.predict_names:
if tn in predictions:
predict_names.append(tn)
predict_tensors = [predictions[tn] for tn in predict_names] + [loss]
predict_tensors = session.run(predict_tensors, feed_dict=feed_dict)
predict_dict = dict(list(zip(predict_names + ["loss"], predict_tensors)))
doc_size = len(doc_tensors)
doc_example = self.coref_eval_data[i]
sentences = doc_example["sentences"]
decoded_predictions = inference_utils.mtl_decode(
sentences, predict_dict, data.ner_labels_inv, data.rel_labels_inv,
self.config)
# Relation extraction.
if "rel" in decoded_predictions:
rel_predictions.extend(decoded_predictions["rel"])
for j in range(len(sentences)):
sent_example = self.eval_data[rel_sent_id][3] # sentence, srl, ner, relations
text_length = len(sentences[j])
ne = predict_dict["num_entities"][j]
gold_entities = set([])
for rel in sent_example:
gold_entities.update([rel[:2], rel[2:4]])
srl_eval_utils.evaluate_retrieval(
predict_dict["candidate_starts"][j], predict_dict["candidate_ends"][j],
predict_dict["candidate_entity_scores"][j], predict_dict["entity_starts"][j][:ne],
predict_dict["entity_ends"][j][:ne], gold_entities, text_length, entity_evaluators)
rel_sent_id += 1
if "ner" in decoded_predictions:
ner_predictions.extend(decoded_predictions["ner"])
if "predicted_clusters" in decoded_predictions:
gold_clusters = [tuple(tuple(m) for m in gc) for gc in doc_example["clusters"]]
gold_mentions = set([])
mention_to_gold = {}
for gc in gold_clusters:
for mention in gc:
mention_to_gold[mention] = gc
gold_mentions.add(mention)
coref_evaluator.update(decoded_predictions["predicted_clusters"], gold_clusters, decoded_predictions["mention_to_predicted"],
mention_to_gold)
coref_predictions[doc_example["doc_key"]] = decoded_predictions["predicted_clusters"]
# Evaluate retrieval.
doc_text_length = sum([len(s) for s in sentences])
srl_eval_utils.evaluate_retrieval(
predict_dict["candidate_mention_starts"], predict_dict["candidate_mention_ends"],
predict_dict["candidate_mention_scores"], predict_dict["mention_starts"], predict_dict["mention_ends"],
gold_mentions, doc_text_length, mention_evaluators)
total_loss += predict_dict["loss"]
if (i + 1) % 50 == 0:
print(("Evaluated {}/{} documents.".format(i + 1, len(self.coref_eval_data))))
debug_printer.close()
summary_dict = {}
task_to_f1 = {} # From task name to F1.
elapsed_time = time.time() - start_time
sentences, gold_srl, gold_ner, gold_relations = list(zip(*self.eval_data))
# Summarize results.
if self.config["relation_weight"] > 0:
precision, recall, f1 = (
srl_eval_utils.compute_relation_f1(sentences, gold_relations, rel_predictions))
task_to_f1["relations"] = f1
summary_dict["Relation F1"] = f1
summary_dict["Relation precision"] = precision
summary_dict["Relation recall"] = recall
for k, evaluator in sorted(list(entity_evaluators.items()), key=operator.itemgetter(0)):
tags = ["{} {} @ {}".format("Entities", t, _k_to_tag(k)) for t in ("R", "P", "F")]
results_to_print = []
for t, v in zip(tags, evaluator.metrics()):
results_to_print.append("{:<10}: {:.4f}".format(t, v))
summary_dict[t] = v
print(", ".join(results_to_print))
if self.config["ner_weight"] > 0:
ner_precision, ner_recall, ner_f1, ul_ner_prec, ul_ner_recall, ul_ner_f1, ner_label_mat = (
srl_eval_utils.compute_span_f1(gold_ner, ner_predictions, "NER"))
summary_dict["NER F1"] = ner_f1
summary_dict["NER precision"] = ner_precision
summary_dict["NER recall"] = ner_recall
summary_dict["Unlabeled NER F1"] = ul_ner_f1
summary_dict["Unlabeled NER precision"] = ul_ner_prec
summary_dict["Unlabeled NER recall"] = ul_ner_recall
# Write NER prediction to IOB format and run official eval script.
srl_eval_utils.print_to_iob2(sentences, gold_ner, ner_predictions, self.config["ner_conll_eval_path"])
task_to_f1["ner"] = ner_f1
#for label_pair, freq in ner_label_mat.most_common():
# if label_pair[0] != label_pair[1] and freq > 10:
# print ("{}\t{}\t{}".format(label_pair[0], label_pair[1], freq))
if self.config["coref_weight"] > 0:
#conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, official_stdout)
#coref_conll_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
#summary_dict["Average F1 (conll)"] = coref_conll_f1
#print "Average F1 (conll): {:.2f}%".format(coref_conll_f1)
p,r,f = coref_evaluator.get_prf()
summary_dict["Average Coref F1 (py)"] = f
print("Average F1 (py): {:.2f}%".format(f * 100))
summary_dict["Average Coref precision (py)"] = p
print("Average precision (py): {:.2f}%".format(p * 100))
summary_dict["Average Coref recall (py)"] = r
print("Average recall (py): {:.2f}%".format(r * 100))
task_to_f1["coref"] = f * 100 # coref_conll_f1
for k, evaluator in sorted(list(mention_evaluators.items()), key=operator.itemgetter(0)):
tags = ["{} {} @ {}".format("Mentions", t, _k_to_tag(k)) for t in ("R", "P", "F")]
results_to_print = []
for t, v in zip(tags, evaluator.metrics()):
results_to_print.append("{:<10}: {:.4f}".format(t, v))
summary_dict[t] = v
print(", ".join(results_to_print))
summary_dict["Dev Loss"] = total_loss / len(self.coref_eval_data)
print("Decoding took {}.".format(str(datetime.timedelta(seconds=int(elapsed_time)))))
print("Decoding speed: {}/document, or {}/sentence.".format(
str(datetime.timedelta(seconds=int(elapsed_time / len(self.coref_eval_data)))),
str(datetime.timedelta(seconds=int(elapsed_time / len(self.eval_data))))
))
metric_names = self.config["main_metrics"].split("_")
main_metric = sum([task_to_f1[t] for t in metric_names]) / len(metric_names)
print("Combined metric ({}): {}".format(self.config["main_metrics"], main_metric))
return util.make_summary(summary_dict), main_metric, task_to_f1