-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_mouse_go_enrichment.r
200 lines (180 loc) · 8.61 KB
/
analyze_mouse_go_enrichment.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
###############################################################
### File: analyze_mouse_go_enrichment.r
### Description: Performs mouse GO enrichment analysis
### Usage #1: Rscript analyze_mouse_go_enrichment.r
### Usage #2: Rscript analyze_mouse_go_enrichment.r output/enrichr_mouse_go/go_gsea.xlsx data/go_term_collapse.csv
### Written by Delaney Sullivan
###############################################################
source("analysis_setup.r")
output_dir <- "./output/enrichr_mouse_go/"
threshold_num_terms <- 100 # The number of GO terms in each GSEA to be considered "top"
# Get command-line arguments
args <- commandArgs(TRUE)
input_gsea <- NULL # GSEA results previously computed
go_term_collapse <- NULL # Collapsed GO term annotation (for heatmap display)
if (length(args) >= 2) {
input_gsea <- args[1]
go_term_collapse <- read.csv(args[2], stringsAsFactors=FALSE, check.names=FALSE)
go_term_collapse$Other <- NULL
}
# Function to get top GO terms
selectTopGO <- function(data, threshold_num_terms) {
top_terms <- c()
for (i in colnames(data)) {
curr_row <- data[!is.na(data[,i]), ]
curr_row <- curr_row[order(curr_row[,i]),]
curr_row <- curr_row[1:threshold_num_terms,]
curr_row <- curr_row[complete.cases(curr_row),]
top_terms <- c(top_terms, rownames(curr_row))
}
top_terms <- unique(top_terms)
return(top_terms)
}
# Read in differentially expressed genes
de_table <- read.xlsx("output/mouse_de/de_table.xlsx", sep.names=" ", check.names=FALSE)
de_table$ID <- NULL
rownames(de_table) <- de_table$Symbol
de_table$Symbol <- NULL
# Skip the RAS samples
de_table[,sample_mapping["lung_ras"]] <- NULL
de_table[,sample_mapping["lung_mycras"]] <- NULL
colnames(de_table) <- unlist(strsplit(colnames(de_table), " \\(.*\\)")) # Remove stuff in parantheses in display label
# Read in GO gene lists
genesets_mouse_go <- gmtPathways("data/GO_Biological_Process_2018.txt")
if (is.null(input_gsea)) { # If we have yet to perform GSEA (i.e. GSEA results file not supplied)
# Do GSEA and write output to .xlsx file
wb <- createWorkbook("GSEA Results")
gsea_results <- NULL
for (i in colnames(de_table)) {
expression_rnk_list <- setNames(de_table[,i], toupper(rownames(de_table)))
expression_rnk_list <- expression_rnk_list[!is.na(expression_rnk_list)]
res <- fgsea(pathways=genesets_mouse_go, stats=expression_rnk_list, gseaParam=1, nperm=250000)
res <- as.data.frame(res)[,c("pathway","ES", "NES", "pval", "padj")]
res <- res[order(res$pval, abs(res$NES)),]
addWorksheet(wb, i)
writeData(wb, sheet = i, res, rowNames = FALSE)
colnames(res) <- c("pathway", paste(i, colnames(res)[2:ncol(res)], sep="_"))
if (is.null(gsea_results)) {
gsea_results <- res
} else {
gsea_results <- merge(gsea_results, res, by="pathway", all=TRUE)
}
}
saveWorkbook(wb, paste(output_dir, "go_gsea.xlsx", sep=""), overwrite = TRUE)
rownames(gsea_results) <- gsea_results$pathway
# Get p-value data
gsea_results_pval <- gsea_results[,grepl("_pval$", colnames(gsea_results))]
colnames(gsea_results_pval) <- substr(colnames(gsea_results_pval),1,nchar(colnames(gsea_results_pval))-5)
gsea_results_pval[is.na(gsea_results_pval)] <- 1
# Get top terms based on p-value
topTerms <- selectTopGO(gsea_results_pval, threshold_num_terms)
writeLines(topTerms, paste(output_dir, "topterms.txt", sep=""))
quit()
}
# Do tissue GO enrichment
tissue_go <- do_enrichment("GO_Biological_Process_2018", NULL, genesets_mouse_tissue, output_file=paste(output_dir, "tissue_go.xlsx", sep=""))
tissue_go_or <- tissue_go[,grepl("_Odds.Ratio$", colnames(tissue_go))]
colnames(tissue_go_or) <- substr(colnames(tissue_go_or),1,nchar(colnames(tissue_go_or))-11)
tissue_go_or <- tissue_go_or[,mouse_tissue_geneset_names]
tissue_go_or[is.na(tissue_go_or)] <- 0
gsea_results <- NULL
for (i in colnames(de_table)) {
res <- read.xlsx(input_gsea, sheet=i, sep.names=" ", check.names=FALSE)
colnames(res) <- c("pathway", paste(i, colnames(res)[2:ncol(res)], sep="_"))
if (is.null(gsea_results)) {
gsea_results <- res
} else {
gsea_results <- merge(gsea_results, res, by="pathway", all=TRUE)
}
}
rownames(gsea_results) <- gsea_results$pathway
# Get the padj and NES data into separate data frames
gsea_results_padj <- gsea_results[,grepl("_padj$", colnames(gsea_results))]
colnames(gsea_results_padj) <- substr(colnames(gsea_results_padj),1,nchar(colnames(gsea_results_padj))-5)
gsea_results <- gsea_results[,grepl("_NES$", colnames(gsea_results))]
colnames(gsea_results) <- substr(colnames(gsea_results),1,nchar(colnames(gsea_results))-4)
# Fix the NA's in the padj and NES
gsea_results_padj[is.na(gsea_results_padj)] <- 1
gsea_results[is.na(gsea_results)] <- 0
# Select the GO terms we want to analyze
topTerms <- unname(unlist(go_term_collapse))
topTerms <- topTerms[!is.na(topTerms) & topTerms != ""]
print(paste("Processing", length(topTerms), "terms"))
gsea_results_padj <- gsea_results_padj[rownames(gsea_results_padj) %in% topTerms,]
gsea_results <- gsea_results[rownames(gsea_results) %in% topTerms,]
# Convert GSEA padj into signed log10 padj
for (i in rownames(gsea_results_padj)) {
for (j in colnames(gsea_results_padj)) {
gsea_results[i,j] <- sign(gsea_results[i,j])*-log10(gsea_results_padj[i,j])
}
}
# Cluster GO terms by supplied category
go_cluster_assignment <- list()
for (go_term in topTerms) {
go_term_cluster <- apply(go_term_collapse, 1, function(x) match(go_term, x))
go_term_cluster <- colnames(go_term_collapse)[go_term_cluster[!is.na(go_term_cluster)][1]]
if (!is.na(go_term_cluster)) {
go_cluster_assignment[go_term] <- go_term_cluster
}
}
gsea_results <- gsea_results[rownames(gsea_results) %in% names(go_cluster_assignment),]
gsea_results <- as.matrix(gsea_results[names(go_cluster_assignment),])
# Function to set color scheme for heatmap
col_fun <- function(x, breaks) {
a <- rep("white", length(x))
cutoff <- 0.25
a[abs(x) < -log10(cutoff)] <- "white"
a[x >= -log10(cutoff)] <- "#F6CAC8"
a[x <= log10(cutoff)] <- "#CEC9FF"
cutoff <- 0.10
a[x >= -log10(cutoff)] <- "#EF908F"
a[x <= log10(cutoff)] <- "#958EF7"
cutoff <- 0.05
a[x >= -log10(cutoff)] <- "#EB4848"
a[x <= log10(cutoff)] <- "#3E3EF5"
cutoff <- 0.01
a[x >= -log10(cutoff)] <- "red"
a[x <= log10(cutoff)] <- "blue"
return(a)
}
attr(col_fun,'breaks') <- c(-2, 0, 2)
# Setup heatmap
ha_plot = HeatmapAnnotation(graph=anno_empty(border=TRUE), height=unit(2, "cm"), gap=unit(c(0.2,0), "cm"))
hm <- Heatmap(as.matrix(t(gsea_results)), bottom_annotation = ha_plot, column_split=factor(paste0(go_cluster_assignment), levels=(colnames(go_term_collapse))), border=TRUE, show_row_dend=FALSE, show_column_names=FALSE, column_gap=unit(0.1, "mm"), column_dend_height=unit(7.5, "mm"), row_names_side="left", row_names_gp = gpar(fontsize = 9), height=unit(20, "mm"), width=unit(200, "mm"), rect_gp = gpar(col = "black", lwd = 0.15), column_title_gp = gpar(fontsize = 3), col=col_fun, cluster_column_slices=FALSE, show_heatmap_legend=FALSE)
# Function to draw bar graph below the heatmap
drawBars <- function(values, num_cells) {
pos <- floor(num_cells / 2) - 1.65
box_width <- 1
colors <- c("black", "red","blue","purple","#A9A87E","#A37C4B")
for (v in 1:length(values)) {
grid.rect(x = pos+(v-1)*box_width, y = 0, height=values[v], width=box_width, just="bottom", gp = gpar(fill = colors[v], lwd=0), default.units = "native")
}
}
# Draw heatmap and the bar graph
pdf(paste(output_dir, "heatmap_go.pdf", sep=""), width=16, height=8)
pushViewport(viewport(layout=grid.layout(nr=1, nc=1)))
pushViewport(viewport(layout.pos.row=1, layout.pos.col=1))
draw(hm, newpage=FALSE)
for(i in 1:ncol(go_term_collapse)) {
decorate_annotation("graph", slice = i, {
num_cells <- sum(go_cluster_assignment == colnames(go_term_collapse)[i])
pushViewport(viewport(xscale=c(0, num_cells), yscale = c(0, 7)))
terms_in_cluster <- names(go_cluster_assignment[(go_cluster_assignment == colnames(go_term_collapse)[i])])
drawBars(apply(tissue_go_or[rownames(tissue_go_or) %in% terms_in_cluster,], 2, median), num_cells)
if (i == 1) {
grid.yaxis(at = c(0, 3.5, 7), gp=gpar(fontsize = 8))
}
popViewport()
})
}
upViewport()
upViewport()
heatmap_order <- column_order(hm)
device <- dev.off()
# Write out GO terms from heatmap
heatmap_go_terms <- data.frame(Category=character(), Term=character(), stringsAsFactors=FALSE)
for (term_category in names(heatmap_order)) {
terms_to_add <- rownames(gsea_results)[heatmap_order[[term_category]]]
heatmap_go_terms <- rbind(heatmap_go_terms, data.frame(Category=rep(term_category, length(terms_to_add)), Term=terms_to_add))
}
write.csv(heatmap_go_terms, file=paste(output_dir, "heatmap_go_terms.csv", sep=""), row.names=FALSE)