-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai data analytics.py
140 lines (112 loc) Β· 5.87 KB
/
ai data analytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from openai import OpenAI, OpenAIError
client = OpenAI(api_key='your-api-key-here')
import time
# Replace with your OpenAI API key
# Set the title and introduction
st.set_page_config(page_title="π Mutual Fund Data Analysis", page_icon=":bar_chart:")
st.title("π Mutual Fund Data Analysis")
st.write("Upload 5 CSV files and do Analysis on them")
# Upload CSV files
uploaded_files = st.file_uploader("Choose 5 CSV files", type=["csv"], accept_multiple_files=True)
dfs = []
file_names = []
for uploaded_file in uploaded_files:
dfs.append(pd.read_csv(uploaded_file))
file_names.append(uploaded_file.name)
if uploaded_files:
# Calculate geometric and arithmetic means
gm_values = []
am_values = []
for df in dfs:
adj_close_values = df['Adj Close']
gm = np.exp(np.mean(np.log(adj_close_values)))
am = np.mean(adj_close_values)
gm_values.append(gm)
am_values.append(am)
# Find the highest means
max_gm_index = np.argmax(gm_values)
max_am_index = np.argmax(am_values)
highest_file_name_gm = file_names[max_gm_index]
highest_file_name_am = file_names[max_am_index]
# Create an input box for user prompts
st.write("## π€ Chat with AI")
user_prompt = st.text_area("Enter a prompt for analysis:", value="Calculate the trend in the data.")
generate_button = st.button("Generate Analysis")
# Add loading animation when Generate Analysis button is clicked
if generate_button:
with st.spinner("Generating analysis..."):
time.sleep(6)
# Combine user prompt with uploaded data information
prompt = f"User Prompt: {user_prompt}\n"
data_info = ""
for file_name, gm, am in zip(file_names, gm_values, am_values):
data_info += f"{file_name[:-4]} - Geometric Mean: {gm:.4f}, Arithmetic Mean: {am:.2f}\n"
# Combine user prompt and data information for OpenAI
combined_prompt = prompt + "Data Information:\n" + data_info
try:
# Generate response from OpenAI
response = client.completions.create(model="text-davinci-003",
prompt=combined_prompt,
max_tokens=500)
# Display OpenAI response
st.subheader("AI Output")
st.write(response.choices[0].text)
except OpenAIError as e:
if e.error_code == "insufficient_quota":
st.error("OpenAI API usage limit exceeded. Please try again later.")
else:
st.error(f"OpenAI API error: {e}")
# Display the highest means and Adj Close price in colored boxes
st.sidebar.title("π Top Fund")
highest_name_html = f'<p style="text-align: left; font-size: 26px; color: green; font-weight: bold;">{highest_file_name_gm[:-4]}</p>'
st.sidebar.markdown(highest_name_html, unsafe_allow_html=True)
st.sidebar.markdown(f"**Geometric Mean:** {gm_values[max_gm_index]:.4f}")
st.sidebar.markdown(f"**Arithmetic Mean:** {am_values[max_gm_index]:.2f}")
highest_price = dfs[max_gm_index]['Adj Close'].max()
st.sidebar.markdown(f"**Adj Close Price:** {highest_price:.2f}")
# Create buttons to display means for all companies
display_geometric = st.sidebar.button("π Display Geometric Means")
display_arithmetic = st.sidebar.button("π Display Arithmetic Means")
unique_file_names = list(set(file_names))
unique_file_names.sort()
if display_geometric:
st.sidebar.subheader("Geometric Means for All Companies")
for file_name in unique_file_names:
idx = file_names.index(file_name)
st.sidebar.write(f"{file_name[:-4]}: Geometric Mean: {gm_values[idx]:.4f}")
if display_arithmetic:
st.sidebar.subheader("Arithmetic Means for All Companies")
for file_name in unique_file_names:
idx = file_names.index(file_name)
st.sidebar.write(f"{file_name[:-4]}: Arithmetic Mean: {am_values[idx]:.2f}")
# Create a line chart for Adj Close prices
st.write(f"## {highest_file_name_gm[:-4]}")
fig = px.line(dfs[max_gm_index], x='Date', y='Adj Close', title=f'π Adj Close Prices in {highest_file_name_gm[:-4]}')
st.plotly_chart(fig, use_container_width=True)
# Create donut chart for geometric mean of all companies
gm_data = pd.DataFrame({'Company': [name[:-4] for name in unique_file_names], 'Geometric Mean': gm_values})
gm_chart = px.pie(gm_data, values='Geometric Mean', names='Company', hole=0.5, title=" Geometric Mean Distribution")
# Create donut chart for arithmetic mean of all companies
am_data = pd.DataFrame({'Company': [name[:-4] for name in unique_file_names], 'Arithmetic Mean': am_values})
am_chart = px.pie(am_data, values='Arithmetic Mean', names='Company', hole=0.5, title=" Arithmetic Mean Distribution")
# Display donut charts side by side with space in between
st.write("## β¨ Mean Distribution")
col1, spacer, col2 = st.columns([1, 0.2, 1]) # Divide the space into three columns
with col1:
st.plotly_chart(gm_chart, use_container_width=True)
with spacer:
st.write("")
with col2:
st.plotly_chart(am_chart, use_container_width=True)
# Create bar chart for average Adj Close price of each company
st.write("## π Average Return for Each Company")
avg_adj_close_per_company = [np.mean(df['Adj Close']) for df in dfs]
avg_per_company_data = pd.DataFrame(
{'Company': [name[:-4] for name in unique_file_names], 'Average Adj Close Price': avg_adj_close_per_company})
avg_per_company_chart = px.bar(avg_per_company_data, x='Company', y='Average Adj Close Price',
title=" Average Adj Close Price for Each Company")
st.plotly_chart(avg_per_company_chart, use_container_width=True)