-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcmm_train.py
148 lines (124 loc) · 4.72 KB
/
cmm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import print_function
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Input, Lambda
from keras.layers import Dense, Average, Activation, add, Concatenate, GlobalMaxPool1D, GlobalAveragePooling1D
from keras.layers import TimeDistributed
from keras.models import Model
from keras.callbacks import ModelCheckpoint
from keras.callbacks import LearningRateScheduler
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
from keras import backend as K
import h5py
import math
import random
random.seed(3344)
def step_decay(epoch):
initial_lrate = 0.001
drop = 0.1
epochs_drop = 5
lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))
return lrate
##data loader
#load train data
with h5py.File('data/labels_closs.h5', 'r') as hf:
closs_labels = hf['avadataset'][:]
with h5py.File('data/visual_feature_vec.h5', 'r') as hf:
video_features = hf['avadataset'][:]
with h5py.File('data/audio_feature.h5', 'r') as hf:
audio_features = hf['avadataset'][:]
with h5py.File('data/train_order_match.h5', 'r') as hf:
train_l = hf['order'][:]
with h5py.File('data/val_order_match.h5', 'r') as hf:
val_l = hf['order'][:]
with h5py.File('data/test_order_match.h5', 'r') as hf:
test_l = hf['order'][:]
closs_labels = np.array(closs_labels)
audio_features = np.array(audio_features)
video_features = np.array(video_features)
closs_labels = closs_labels.astype("float32")
audio_features = audio_features.astype("float32")
video_features = video_features.astype("float32")
##
x_audio_train = np.zeros((len(train_l)*10, 128))
x_video_train = np.zeros((len(train_l)*10, 512))
x_audio_val = np.zeros((len(val_l)*10, 128))
x_video_val = np.zeros((len(val_l)*10, 512))
x_audio_test = np.zeros((len(test_l)*10, 128))
x_video_test = np.zeros((len(test_l)*10, 512))
y_train = np.zeros((len(train_l)*10))
y_val = np.zeros((len(val_l)*10))
y_test = np.zeros((len(test_l)*10))
##
for i in range(len(train_l)):
id = train_l[i]
for j in range(10):
x_audio_train[10*i + j, :] = audio_features[id, j, :]
x_video_train[10*i + j, :] = video_features[id, j, :]
y_train[10*i + j] = closs_labels[id, j]
for i in range(len(val_l)):
id = val_l[i]
for j in range(10):
x_audio_val[10 * i + j, :] = audio_features[id, j, :]
x_video_val[10 * i + j, :] = video_features[id, j, :]
y_val[10 * i + j] = closs_labels[id, j]
for i in range(len(test_l)):
id = test_l[i]
for j in range(10):
x_audio_test[10 * i + j, :] = audio_features[id, j, :]
x_video_test[10 * i + j, :] = video_features[id, j, :]
y_test[10 * i + j] = closs_labels[id, j]
print("data loading finished!")
def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
def contrastive_loss(y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
margin = 2.0
return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
def compute_accuracy(predictions, labels):
'''Compute classification accuracy with a fixed threshold on distances.
'''
preds = predictions.ravel() < 0.5
return ((preds & labels).sum() +
(np.logical_not(preds) & np.logical_not(labels)).sum()) / float(labels.size)
def scmm_net(input_audio_shape, input_video_shape):
video_input = Input(shape=(512,)) #512
video = Dense(128)(video_input)
video = LeakyReLU(alpha=0.3)(video)
video = Dense(64)(video)
audio_input = Input(shape=(128,)) #128
audio = Dense(128)(audio_input)
audio = LeakyReLU(alpha=0.3)(audio)
audio = Dense(64)(audio)
distance = Lambda(euclidean_distance,
output_shape=eucl_dist_output_shape)([video, audio])
model = Model([video_input, audio_input], distance)
return model
'''parameters'''
batch_size = 8
nb_epoch = 20
output_dim = 29#9
input_video_shape = x_video_train.shape[1]
input_audio_shape = x_audio_train.shape[1]
# network definition
model = scmm_net(input_video_shape, input_audio_shape)
# train
adam = Adam()
model.compile(loss=contrastive_loss, optimizer=adam)
model.fit([x_video_train, x_audio_train], y_train,
batch_size=8,
epochs=nb_epoch,
validation_data=([x_video_val, x_audio_val], y_val))
json_string = model.to_json()
open('model/cmm_model.json','w').write(json_string)
model.save_weights('model/cmm_model_weights.h5')