-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
94 lines (71 loc) · 4.33 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import torchvision.models as models
class ImgEncoder(nn.Module):
def __init__(self, embed_size):
"""(1) Load the pretrained model as you want.
cf) one needs to check structure of model using 'print(model)'
to remove last fc layer from the model.
(2) Replace final fc layer (score values from the ImageNet)
with new fc layer (image feature).
(3) Normalize feature vector.
"""
super(ImgEncoder, self).__init__()
#model = models.vgg19(pretrained=True)
#in_features = model.classifier[-1].in_features # input size of feature vector
#model.classifier = nn.Sequential(
# *list(model.classifier.children())[:-1]) # remove last fc layer
model = models.resnet50(pretrained=True)
in_features = model.fc.in_features
model = nn.Sequential(*(list(model.children())[:-1]))
self.model = model # loaded model without last fc layer
self.fc = nn.Linear(in_features, embed_size) # feature vector of image
def forward(self, image):
"""Extract feature vector from image vector.
"""
#print('hello')
with torch.no_grad():
img_feature = self.model(image) # [batch_size, vgg16(19)_fc=4096]
img_feature = img_feature.view(img_feature.size(0), -1)
img_feature = self.fc(img_feature) # [batch_size, embed_size]
l2_norm = img_feature.norm(p=2, dim=1, keepdim=True).detach()
img_feature = img_feature.div(l2_norm) # l2-normalized feature vector
return img_feature
class QstEncoder(nn.Module):
def __init__(self, qst_vocab_size, word_embed_size, embed_size, num_layers, hidden_size):
super(QstEncoder, self).__init__()
self.word2vec = nn.Embedding(qst_vocab_size, word_embed_size)
self.tanh = nn.Tanh()
self.lstm = nn.LSTM(word_embed_size, hidden_size, num_layers)
self.fc = nn.Linear(2*num_layers*hidden_size, embed_size) # 2 for hidden and cell states
def forward(self, question):
qst_vec = self.word2vec(question) # [batch_size, max_qst_length=30, word_embed_size=300]
qst_vec = self.tanh(qst_vec)
qst_vec = qst_vec.transpose(0, 1) # [max_qst_length=30, batch_size, word_embed_size=300]
_, (hidden, cell) = self.lstm(qst_vec) # [num_layers=2, batch_size, hidden_size=512]
qst_feature = torch.cat((hidden, cell), 2) # [num_layers=2, batch_size, 2*hidden_size=1024]
qst_feature = qst_feature.transpose(0, 1) # [batch_size, num_layers=2, 2*hidden_size=1024]
qst_feature = qst_feature.reshape(qst_feature.size()[0], -1) # [batch_size, 2*num_layers*hidden_size=2048]
qst_feature = self.tanh(qst_feature)
qst_feature = self.fc(qst_feature) # [batch_size, embed_size]
return qst_feature
class VqaModel(nn.Module):
def __init__(self, embed_size, qst_vocab_size, ans_vocab_size, word_embed_size, num_layers, hidden_size):
super(VqaModel, self).__init__()
self.img_encoder = ImgEncoder(embed_size)
self.qst_encoder = QstEncoder(qst_vocab_size, word_embed_size, embed_size, num_layers, hidden_size)
self.tanh = nn.Tanh()
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(embed_size, ans_vocab_size)
self.fc2 = nn.Linear(ans_vocab_size, ans_vocab_size)
def forward(self, img, qst):
img_feature = self.img_encoder(img) # [batch_size, embed_size]
qst_feature = self.qst_encoder(qst) # [batch_size, embed_size]
combined_feature = torch.mul(img_feature, qst_feature) # [batch_size, embed_size]
combined_feature = self.tanh(combined_feature)
combined_feature = self.dropout(combined_feature)
combined_feature = self.fc1(combined_feature) # [batch_size, ans_vocab_size=1000]
combined_feature = self.tanh(combined_feature)
combined_feature = self.dropout(combined_feature)
combined_feature = self.fc2(combined_feature) # [batch_size, ans_vocab_size=1000]
return combined_feature