forked from Zefan-Cai/KVCache-Factory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
181 lines (159 loc) · 6.39 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import json
import argparse
import numpy as np
from metrics import (
qa_f1_score,
rouge_zh_score,
qa_f1_zh_score,
rouge_score,
classification_score,
retrieval_score,
retrieval_zh_score,
count_score,
code_sim_score,
)
dataset2metric = {
"narrativeqa": qa_f1_score,
"qasper": qa_f1_score,
"multifieldqa_en": qa_f1_score,
"multifieldqa_zh": qa_f1_zh_score,
"hotpotqa": qa_f1_score,
"2wikimqa": qa_f1_score,
"musique": qa_f1_score,
"dureader": rouge_zh_score,
"gov_report": rouge_score,
"qmsum": rouge_score,
"multi_news": rouge_score,
"vcsum": rouge_zh_score,
"trec": classification_score,
"triviaqa": qa_f1_score,
"samsum": rouge_score,
"lsht": classification_score,
"passage_retrieval_en": retrieval_score,
"passage_count": count_score,
"passage_retrieval_zh": retrieval_zh_score,
"lcc": code_sim_score,
"repobench-p": code_sim_score,
}
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--results_dir', type=str, default=None)
parser.add_argument('--longbench_e', action='store_true', help="Evaluate on LongBench-E")
return parser.parse_args(args)
def scorer_e(dataset, predictions, answers, lengths, all_classes):
scores = {"0-4k": [], "4-8k": [], "8k+": []}
for (prediction, ground_truths, length) in zip(predictions, answers, lengths):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes))
if length < 4000:
scores["0-4k"].append(score)
elif length < 8000:
scores["4-8k"].append(score)
else:
scores["8k+"].append(score)
for key in scores.keys():
scores[key] = round(100 * np.mean(scores[key]), 2)
return scores
def scorer(dataset, predictions, answers, all_classes):
total_score = 0.
for (prediction, ground_truths) in zip(predictions, answers):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes))
total_score += score
return round(100 * total_score / len(predictions), 2)
if __name__ == '__main__':
args = parse_args()
dataset_list = [
"narrativeqa",
"qasper",
"multifieldqa_en",
"hotpotqa",
"2wikimqa",
"musique",
"gov_report",
"qmsum",
"multi_news",
"trec",
"triviaqa",
"samsum",
"passage_count",
"passage_retrieval_en",
"lcc",
"repobench-p"
]
results_list = [
["dataset"],
["FullKV"],
["random"],
["SnapKV"],
["StreamingLLM"],
["H2O"],
["PyramidKV"],
]
for dataset in dataset_list:
results_list[0].append(dataset)
for idx, method in enumerate(["FullKV", "random", "SnapKV", "StreamingLLM", "H2O", "PyramidKV"]):
# for idx, method in enumerate(["H2_global", "PyramidKV_global", "local"]):
try:
args.method = method
args.dataset = dataset
args.eval_file = os.path.join(args.results_dir,dataset,f"{method}.json")
# try:
scores = dict()
# if args.longbench_e:
# path = f"pred_e/{args.model}/"
# else:
# path = f"pred_e/{args.model}/"
# all_files = os.listdir(path)
# print("Evaluating on:", all_files)
# for filename in all_files:
# if not filename.endswith("jsonl"):
# continue
predictions, answers, lengths = [], [], []
# dataset = filename.split('.')[0]
with open(args.eval_file, "r", encoding="utf-8") as f:
for line in f:
try:
data = json.loads(line)
predictions.append(data["pred"])
answers.append(data["answers"])
all_classes = data["all_classes"]
if "length" in data:
lengths.append(data["length"])
except:
print("error")
if args.longbench_e:
score = scorer_e(args.dataset, predictions, answers, lengths, all_classes)
else:
score = scorer(args.dataset, predictions, answers, all_classes)
if args.dataset == 'qasper':
score_e = scorer_e(args.dataset, predictions, answers, lengths, all_classes)
scores[args.dataset] = score
# if dataset == 'qasper':
# scores[dataset + '_e'] = score_e
# if args.longbench_e:
# out_path = f"H2O/results/{args.model}/result.json"
# else:
# out_path = f"H2O/results/{args.model}/result.json"
# out_path_e = f"pred/{args.model}/result_e.json"
# with open(out_path_e, "w") as f:
# json.dump(score_e, f, ensure_ascii=False, indent=4)
output_dir = os.path.dirname(args.eval_file)
results_list[idx+1].append(score)
with open(os.path.join(output_dir, "metrics.json"), "w") as f:
json.dump(scores, f, ensure_ascii=False, indent=4)
print(f"dataset {args.dataset} method {args.method} scores {scores}")
except:
results_list[idx+1].append(-1)
print(f"dataset {args.dataset} method {args.method} scores {None}")
import csv
with open(os.path.join(args.results_dir,f"results.csv"), 'w') as fp:
writer = csv.writer(fp)
writer.writerows(results_list)