-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
401 lines (308 loc) · 13.1 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from types import GeneratorType
import os
import time
import torch
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import LambdaLR
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import datasets
from utils.metrics import evaluate
from option import opt, method_model_dict, update_dataset
from utils.common import generate_model, TwoStreamBatchSampler, set_seed
from utils.loss import BceDiceLoss, entropy_loss
from utils.metrics import Metrics
from utils import ramps
import warnings
def get_current_consistency_weight(e, consistency, consistency_rampup):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return consistency * ramps.sigmoid_rampup(e, consistency_rampup)
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(param.data, alpha=1 - alpha)
def valid(model, valid_dataloader, total_batch, use_gpu):
model.eval()
# Metrics_logger initialization
metrics = Metrics(['recall', 'specificity', 'precision', 'Dice', 'F2',
'ACC_overall', 'IoU_poly', 'IoU_bg', 'IoU_mean'])
with torch.no_grad():
for batch_idx, data in tqdm(enumerate(valid_dataloader), total=total_batch):
img, gt = data['image'], data['label']
if use_gpu:
img = img.cuda()
gt = gt.cuda()
output = model(img)
metrics.update(**evaluate(output, gt))
metrics_result = metrics.mean()
return metrics_result
def train(option):
# set random seed
set_seed(option.expID)
# cuda device
if option.use_gpu:
torch.cuda.set_device(option.gpu_id)
# load data
train_data = getattr(datasets, option.dataset)(option.root, option.train_data_dir, mode='train')
total_num = len(train_data)
if option.label_mode == 'percentage':
labeled_num = round(total_num * option.labeled_perc / 100)
else:
labeled_num = option.labeled_num
print(
f"Total training images: {total_num}, "
f"labelled images: {labeled_num}, "
f"labelled/total: {labeled_num / total_num * 100:.2f}%"
)
batch_sampler = TwoStreamBatchSampler(
total_num, labeled_num, option.labeled_bs, option.batch_size - option.labeled_bs, shuffle=option.shuffle
)
train_dataloader = DataLoader(train_data, batch_sampler=batch_sampler, shuffle=False,
num_workers=option.num_workers)
valid_data = getattr(datasets, option.dataset)(option.root, option.valid_data_dir, mode='valid')
valid_dataloader = DataLoader(valid_data, batch_size=1, shuffle=False, num_workers=option.num_workers)
val_total_batch = len(valid_data)
option.model = method_model_dict[option.method]
model = generate_model(option)
ema_model = generate_model(option, ema=True)
model.train()
# load optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(), lr=option.lr, momentum=option.mt, weight_decay=option.weight_decay)
scheduler = LambdaLR(optimizer, lambda e: 1.0 - pow((e / option.nEpoch), option.power))
kl_distance = None
if option.use_gpu:
criterion = BceDiceLoss().cuda()
if option.method == 'URPC':
kl_distance = nn.KLDivLoss(reduction='none').cuda()
else:
criterion = BceDiceLoss()
if option.method == 'URPC':
kl_distance = nn.KLDivLoss(reduction='none')
# train
print('Start training')
print('---------------------------------\n')
os.makedirs(
os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f'{option.method}_{option.model}',
f'exp{option.expID}'
),
exist_ok=True
)
train_param_path = os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f'{option.method}_{option.model}',
f'exp{option.expID}',
'train_param.log'
)
with open(train_param_path, 'w') as f:
f.write('\n'.join([f'{k}:{v}' for k, v in vars(option).items()]))
f.close()
iter_num = 0
best_performance = 0.0
best_epoch = 1
best_metrics = {}
# time
epoch_time = list()
batch_time = list()
for epoch in range(option.nEpoch):
start_epoch_time = time.time_ns()
print(f"{'-' * 20} Epoch: {epoch + 1}, Method: {option.method}, Dataset: {option.dataset} {'-' * 20}")
model.train()
total_batch = int(labeled_num / option.labeled_bs)
progress_bar = tqdm(enumerate(train_dataloader), total=total_batch)
for batch_idx, data in progress_bar:
start_batch_time = time.time_ns()
images, gts = data['image'], data['label']
labeled_img = images[:option.labeled_bs]
unlabeled_img = images[option.labeled_bs:]
if option.use_gpu:
images = images.cuda()
gts = gts.cuda()
labeled_img = labeled_img.cuda()
unlabeled_img = unlabeled_img.cuda()
loss = None
if option.method == 'MT':
pass
elif option.method == 'UA-MT':
pass
elif option.method == 'ICT':
pass
elif option.method == 'ADVENT':
pass
elif option.method == 'ClassMix':
pass
elif option.method == 'URPC':
pass
elif option.method == 'PolypMix':
feature = torch.nn.functional.interpolate(
input=gts,
scale_factor=0.5 ** option.feat_level,
mode='bilinear',
align_corners=True,
)
unlabeled_group0, unlabeled_group1 = torch.chunk(unlabeled_img, 2, 0)
with torch.no_grad():
ema_pred_gt0, ema_feature0 = ema_model(unlabeled_group0)
ema_pred_gt1, ema_feature1 = ema_model(unlabeled_group1)
mix_factor_feature = torch.div(ema_feature1, ema_feature0 + ema_feature1)
feature_mixed = torch.add(
torch.mul(ema_feature0, 1.0 - mix_factor_feature),
torch.mul(ema_feature1, mix_factor_feature),
)
feature_upsample0 = torch.nn.functional.interpolate(
ema_feature0, scale_factor=2 ** option.feat_level, mode='bilinear', align_corners=True
)
feature_upsample1 = torch.nn.functional.interpolate(
ema_feature1, scale_factor=2 ** option.feat_level, mode='bilinear', align_corners=True
)
mix_factor_image = torch.div(feature_upsample1, feature_upsample1 + feature_upsample0)
batch_image_mixed = torch.add(
torch.mul(unlabeled_group0, 1.0 - mix_factor_image),
torch.mul(unlabeled_group1, mix_factor_image),
)
batch_gt_mixed = torch.add(
torch.mul(ema_pred_gt0, 1.0 - mix_factor_image),
torch.mul(ema_pred_gt1, mix_factor_image),
)
domain_mask0 = torch.mul(ema_pred_gt0 > ema_pred_gt1, ema_pred_gt0 > option.thresh)
domain_mask1 = torch.mul(ema_pred_gt1 > ema_pred_gt0, ema_pred_gt1 > option.thresh)
batch_gt_pseudo = torch.add(
torch.mul(ema_pred_gt0, domain_mask0) + torch.mul(ema_pred_gt1, domain_mask1),
torch.mul(batch_gt_mixed, torch.logical_not(torch.logical_or(domain_mask0, domain_mask1))),
)
input_batch = torch.cat([labeled_img, batch_image_mixed], dim=0)
pred_gt, pred_feature = model(input_batch)
# calc loss
loss_supervised_gt = criterion(pred_gt[:option.labeled_bs], gts[:option.labeled_bs])
loss_supervised_feature = criterion(pred_feature[:option.labeled_bs], feature[:option.labeled_bs])
loss_supervised = loss_supervised_gt + loss_supervised_feature
consistency_weight = get_current_consistency_weight(epoch + 1, option.consistency,
option.consistency_rampup)
loss_consistency_gt = criterion(pred_gt[option.labeled_bs:], batch_gt_pseudo)
loss_consistency_feature = torch.mean((pred_feature[option.labeled_bs:] - feature_mixed) ** 2)
loss = loss_supervised + consistency_weight * (loss_consistency_gt + loss_consistency_feature)
elif option.method == 'Supervised_fully':
pass
elif option.method == 'Supervised':
pass
elif option.method == 'Supervised-Pra':
pass
elif option.method == 'Supervised-HRE':
pass
elif option.method == 'Supervised-HarD':
pass
else:
print(f"error method: {option.method}")
optimizer.zero_grad()
loss.backward()
optimizer.step()
end_batch_time = time.time_ns()
batch_time.append((end_batch_time - start_batch_time) * 1e-9)
update_ema_variables(model, ema_model, option.ema_decay, iter_num)
iter_num = iter_num + 1
progress_bar.set_postfix_str('loss: %.5s' % loss.item())
end_epoch_time = time.time_ns()
epoch_time.append((end_epoch_time - start_epoch_time) * 1e-9)
scheduler.step()
metrics_result = valid(model, valid_dataloader, val_total_batch, option.use_gpu)
print(
f"{'Valid':^10s} : {', '.join([f'{k}:{v * 100:.2f}%' for k, v in metrics_result.items()])}"
)
performance = sum([v for k, v in metrics_result.items()])
if (epoch + 1) % option.ckpt_period == 0:
pth_path = os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f"{option.method}_{option.model}",
f"exp{option.expID}",
f"checkpoint_{epoch + 1}.pth"
)
torch.save(model.state_dict(), pth_path)
print(
f"best epoch:{best_epoch:^4d} - {', '.join([f'{k}:{v * 100:.2f}%' for k, v in best_metrics.items()])}"
)
if performance > best_performance:
best_performance = performance
best_metrics.update(metrics_result)
best_epoch = epoch + 1
pth_path = os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f'{option.method}_{option.model}',
f"exp{option.expID}",
f'checkpoint_best.pth'
)
torch.save(model.state_dict(), pth_path)
print(
f"best epoch:{best_epoch:^4d} - {', '.join([f'{k}:{v * 100:.2f}%' for k, v in best_metrics.items()])}"
)
log_path = os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f'{option.method}_{option.model}',
f"exp{option.expID}",
f'train.log'
)
with open(log_path, 'w') as f:
f.write(f"best epoch:{best_epoch:>4d} - {', '.join([f'{k}:{v * 100:.2f}%' for k, v in best_metrics.items()])}")
f.close()
time_path = os.path.join(
option.checkpoints,
f"{option.dataset}_{option.suffix}",
f'{option.method}_{option.model}',
f"exp{option.expID}",
f'time.log'
)
with open(time_path, 'w') as f:
f.write(
f"batch mean time:"
f"{np.mean(batch_time):.6f}s - "
f"{np.mean(batch_time) / 60:.6f}min - "
f"{np.mean(batch_time) / 3600:.6f}h"
)
f.write('\n')
f.write(
f"epoch mean time:"
f"{np.mean(epoch_time):.6f}s - "
f"{np.mean(epoch_time) / 60:.6f}min - "
f"{np.mean(epoch_time) / 3600:.6f}h"
)
f.write('\n')
f.write(
f"total time:"
f"{np.sum(epoch_time) :.6f}s - "
f"{np.sum(epoch_time) / 60:.6f}min - "
f"{np.sum(epoch_time) / 3600:.6f}h"
)
f.write('\n')
f.write(
f"batch time(s):{', '.join([f'{t:.6f}' for t in batch_time])}"
)
f.write('\n')
f.write(
f"epoch time(s):{', '.join([f'{t:.6f}' for t in batch_time])}"
)
f.write('\n')
f.write(
f"epoch time(min):{', '.join([f'{t / 60:.6f}' for t in batch_time])}"
)
f.write('\n')
f.write(
f"epoch time(h):{', '.join([f'{t / 3600:.6f}' for t in batch_time])}"
)
f.write('\n')
f.close()
if __name__ == '__main__':
# close warning
warnings.filterwarnings("ignore")
print('--- PolpySeg Train ---')
for method in method_model_dict.keys():
opt.method = method
train(opt)
print('Done')