-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dijkstra.cpp
112 lines (96 loc) · 3.06 KB
/
Dijkstra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <bits/stdc++.h>
using namespace std;
#define cin_2d(vec, n, m) for(int i = 0; i < n; i++) for(int j = 0; j < m && cin >> vec[i][j]; j++);
#define cout_2d(vec, n, m) for(int i = 0; i < n; i++, cout << "\n") for(int j = 0; j < m && cout << vec[i][j] << " "; j++);
#define fixed(n) fixed << setprecision(n)
#define ceil(n, m) (((n) / (m)) + ((n) % (m) ? 1 : 0))
#define fill(vec, value) memset(vec, value, sizeof(vec));
#define mul_mod(a, b, m) (((a % m) * (b % m)) % m)
#define add_mod(a, b, m) (((a % m) + (b % m)) % m)
#define all(vec) vec.begin(), vec.end()
#define rall(vec) vec.rbegin(), vec.rend()
#define sz(x) int(x.size())
#define debug(x) cout << #x << ": " << (x) << "\n";
#define fi first
#define se second
#define ll long long
#define ull unsigned long long
#define Mod 1'000'000'007
#define OO 2'000'000'000
#define EPS 1e-9
#define PI acos(-1)
template < typename T = int > using Pair = pair < T, T >;
vector < string > RET = {"NO", "YES"};
template < typename T = int > istream& operator >> (istream &in, vector < T > &v) {
for (auto &x : v) in >> x;
return in;
}
template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v) {
for (const T &x : v) out << x << ' ';
return out;
}
template < typename T = int > struct Dijkstra {
struct Edge {
T v, w;
Edge(T V = 0, T W = 0): v(V), w(W) {}
bool operator < (const Edge& e) const {
return w > e.w;
}
};
vector < vector < Edge > > adj;
Dijkstra(int edges, bool indirected = true){
adj = vector < vector < Edge > > (edges);
for(int i = 0, u, v, w; i < edges; i++){
cin >> u >> v >> w;
adj[u].push_back(Edge(v, w));
if(indirected)
adj[v].push_back(Edge(u, w));
}
}
T Min_Cost(int src, int dest){
int n = sz(adj);
vector < T > dist(n, LLONG_MAX);
dist[src] = 0;
priority_queue < Edge > Dij;
Dij.push(Edge(src, 0));
while(!Dij.empty()){
auto [u, cost] = Dij.top();
Dij.pop();
for(auto& [v, w] : adj[u]){
if(dist[v] > dist[u] + w){
dist[v] = dist[u] + w;
Dij.push(Edge(v, dist[v]));
}
}
}
return (dist[dest] == LLONG_MAX ? -1 : dist[dest]);
}
vector < T > get_dist(int src){
int n = sz(adj);
vector < T > dist(n, LLONG_MAX);
dist[src] = 0;
priority_queue < Edge > Dij;
Dij.push(Edge(src, 0));
while(!Dij.empty()){
auto [u, cost] = Dij.top();
Dij.pop();
for(auto& [v, w] : adj[u]){
if(dist[v] > dist[u] + w){
dist[v] = dist[u] + w;
Dij.push(Edge(v, dist[v]));
}
}
}
return dist;
}
};
void Solve(){
}
int main(){
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t = 1;
//cin >> t;
while(t--)
Solve();
return 0;
}