-
Notifications
You must be signed in to change notification settings - Fork 67
/
weights.hpp
169 lines (149 loc) · 5.5 KB
/
weights.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/******************************************************************************
* Copyright (c) 2019, Xilinx, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
/*******************************************************************************
*
* Authors: Giulio Gambardella <[email protected]>
* Thomas B. Preusser <[email protected]>
* Marie-Curie Fellow, Xilinx Ireland, Grant Agreement No. 751339
* Christoph Doehring <[email protected]>
*
* @file weights.hpp
*
* Library of templated HLS classes for BNN deployment.
* This file lists a set of classes used to implement
* weights in neural network.
*
* This project has received funding from the European Union's Framework
* Programme for Research and Innovation Horizon 2020 (2014-2020) under
* the Marie Skłodowska-Curie Grant Agreement No. 751339.
*
*******************************************************************************/
#ifndef WEIGHTS_HPP
#define WEIGHTS_HPP
#include <ap_int.h>
#include <array>
/**
* \brief A binary weight storage adapter that translates the internal
* organization optimized for storage to the generalized access by the MVAU.
*
* \tparam SIMD Number of input columns (channels) computed in parallel
* \tparam PE Number of output rows (channels) computed in parallel
* \tparam TILES 3rd dimension of the weights matrix
*/
template<unsigned SIMD, unsigned PE, unsigned TILES>
class BinaryWeights {
public:
ap_uint<SIMD> m_weights[PE][TILES];
private:
/**
* Temporary container for the tile index to implement the
* memory access in pe -> tile order.
*/
class TileIndex {
BinaryWeights const &m_par;
unsigned const m_idx;
public:
TileIndex(BinaryWeights const &par, unsigned const idx)
: m_par(par), m_idx(idx) {
#pragma HLS inline
}
public:
ap_uint<SIMD> operator[](unsigned const pe) const {
#pragma HLS inline
return m_par.m_weights[pe][m_idx];
}
};
public:
TileIndex weights(unsigned const tile) const {
#pragma HLS inline
return TileIndex(*this, tile);
}
};
/**
* \brief A fixeed point weight storage adapter that translates the internal
* organization optimized for storage to the generalized access by the MVAU.
*
* \tparam SIMD Number of input columns (channels) computed in parallel
* \tparam WT Datatype of the weights
* \tparam PE Number of output rows (channels) computed in parallel
* \tparam TILES 3rd dimension of the weights matrix
*/
template<unsigned SIMD, typename WT ,unsigned PE, unsigned TILES>
class FixedPointWeights {
public:
ap_uint<SIMD*WT::width> m_weights[PE][TILES];
private:
/**
* Temporary container for the tile index to implement the
* memory access in pe -> tile order.
*/
class TileIndex {
FixedPointWeights const &m_par;
unsigned const m_idx;
public:
TileIndex(FixedPointWeights const &par, unsigned const idx)
: m_par(par), m_idx(idx) {
#pragma HLS inline
}
public:
std::array<WT,SIMD> operator[](unsigned const pe) const {
#pragma HLS inline
std::array<WT,SIMD> ret;
for(unsigned int i=0; i<SIMD; i++) {
#pragma HLS unroll
ap_int<WT::width> const local_temp = m_par.m_weights[pe][m_idx]((i+1)*WT::width-1, i*WT::width);
ret[i] = WT(local_temp);
}
return ret;
}
};
public:
TileIndex weights(unsigned const tile) const {
#pragma HLS inline
return TileIndex(*this, tile);
}
};
template<unsigned SIMD, typename WT, unsigned PE>
class Weights_Tile {
public:
ap_uint<SIMD*WT::width> m_weights[PE];
std::array<WT, SIMD> operator[](unsigned const pe) const {
#pragma HLS inline
std::array<WT, SIMD> ret;
for(unsigned int i=0; i<SIMD; i++) {
#pragma HLS unroll
ap_int<WT::width> const local_temp = m_weights[pe]((i+1)*WT::width-1, i*WT::width);
ret[i] = WT(local_temp);
}
return ret;
}
};
#endif