diff --git a/boards/Pynq-Z1/base/notebooks/video/hdmi_introduction.ipynb b/boards/Pynq-Z1/base/notebooks/video/hdmi_introduction.ipynb index 606f7693ce..d18bc87616 100755 --- a/boards/Pynq-Z1/base/notebooks/video/hdmi_introduction.ipynb +++ b/boards/Pynq-Z1/base/notebooks/video/hdmi_introduction.ipynb @@ -162,7 +162,7 @@ "for _ in range(numframes):\n", " inframe = hdmi_in.readframe()\n", " cv2.cvtColor(inframe,cv2.COLOR_BGR2GRAY,dst=grayscale)\n", - " inframe.freebuffer()\n", + " # inframe.freebuffer()\n", " cv2.Laplacian(grayscale, cv2.CV_8U, dst=result)\n", "\n", " outframe = hdmi_out.newframe()\n", @@ -287,7 +287,7 @@ "for _ in range(numframes):\n", " inframe = hdmi_in.readframe()\n", " cv2.cvtColor(inframe,cv2.COLOR_BGR2GRAY,dst=grayscale)\n", - " inframe.freebuffer()\n", + " # inframe.freebuffer()\n", " cv2.Laplacian(grayscale, cv2.CV_8U, dst=result)\n", "\n", " outframe = hdmi_out.newframe()\n", @@ -365,7 +365,7 @@ " inframe = hdmi_in.readframe()\n", " outframe = hdmi_out.newframe()\n", " cv2.Laplacian(inframe, cv2.CV_8U, dst=outframe)\n", - " inframe.freebuffer()\n", + " # inframe.freebuffer()\n", " hdmi_out.writeframe(outframe)\n", " \n", "end = time.time()\n", @@ -527,7 +527,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -541,9 +541,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.0" + "version": "3.10.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/pynq/notebooks/arch/aarch64/common/display_port_introduction.ipynb b/pynq/notebooks/arch/aarch64/common/display_port_introduction.ipynb index 16f65394cc..8db697315f 100755 --- a/pynq/notebooks/arch/aarch64/common/display_port_introduction.ipynb +++ b/pynq/notebooks/arch/aarch64/common/display_port_introduction.ipynb @@ -15,7 +15,10 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -101,6 +104,8 @@ } ], "source": [ + "import os\n", + "os.environ[\"OPENCV_LOG_LEVEL\"]=\"SILENT\"\n", "import cv2\n", "\n", "capture = cv2.VideoCapture(0)\n", @@ -163,7 +168,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -177,9 +182,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.10.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/pynq/notebooks/common/overlay_download.ipynb b/pynq/notebooks/common/overlay_download.ipynb index 4157c6b07a..1648abc4a0 100755 --- a/pynq/notebooks/common/overlay_download.ipynb +++ b/pynq/notebooks/common/overlay_download.ipynb @@ -29,31 +29,13 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "\n", - "require(['notebook/js/codecell'], function(codecell) {\n", - " codecell.CodeCell.options_default.highlight_modes[\n", - " 'magic_text/x-csrc'] = {'reg':[/^%%microblaze/]};\n", - " Jupyter.notebook.events.one('kernel_ready.Kernel', function(){\n", - " Jupyter.notebook.get_cells().map(function(cell){\n", - " if (cell.cell_type == 'code'){ cell.auto_highlight(); } }) ;\n", - " });\n", - "});\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import os, warnings\n", "from pynq import PL\n", "from pynq import Overlay\n", "\n", - "if not os.path.exists(PL.bitfile_name):\n", + "if PL.bitfile_name == None or not os.path.exists(PL.bitfile_name):\n", " warnings.warn('There is no overlay loaded after boot.', UserWarning)" ] }, @@ -78,7 +60,46 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "\n", + "try {\n", + "require(['notebook/js/codecell'], function(codecell) {\n", + " codecell.CodeCell.options_default.highlight_modes[\n", + " 'magic_text/x-csrc'] = {'reg':[/^%%microblaze/]};\n", + " Jupyter.notebook.events.one('kernel_ready.Kernel', function(){\n", + " Jupyter.notebook.get_cells().map(function(cell){\n", + " if (cell.cell_type == 'code'){ cell.auto_highlight(); } }) ;\n", + " });\n", + "});\n", + "} catch (e) {};\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "try {\n", + "require(['notebook/js/codecell'], function(codecell) {\n", + " codecell.CodeCell.options_default.highlight_modes[\n", + " 'magic_text/x-csrc'] = {'reg':[/^%%pybind11/]};\n", + " Jupyter.notebook.events.one('kernel_ready.Kernel', function(){\n", + " Jupyter.notebook.get_cells().map(function(cell){\n", + " if (cell.cell_type == 'code'){ cell.auto_highlight(); } }) ;\n", + " });\n", + "});\n", + "} catch (e) {};\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ol = Overlay(PL.bitfile_name)" ] @@ -98,7 +119,7 @@ { "data": { "text/plain": [ - "'2019/8/2 18:0:15 +752992'" + "''" ] }, "execution_count": 3, @@ -130,7 +151,7 @@ { "data": { "text/plain": [ - "'/usr/local/share/pynq-venv/lib/python3.8/site-packages/pynq/overlays/base/base.bit'" + "'/usr/local/share/pynq-venv/lib/python3.10/site-packages/pynq/overlays/base/base.bit'" ] }, "execution_count": 4, @@ -150,7 +171,7 @@ { "data": { "text/plain": [ - "'2019/8/2 18:0:15 +752992'" + "'2022/10/3 21:36:17 +589236'" ] }, "execution_count": 5, @@ -195,7 +216,7 @@ "source": [ "## 3. Overlay downloading overhead\n", "\n", - "Finally, using Python, we can see the bitstream download time over 50 downloads. " + "Finally, using Python, we can see the bitstream download time over 50 downloads. We use the Bitstream class to download the bitstream directly, bypassing any Overlay PL state caching." ] }, { @@ -205,19 +226,64 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAFolJREFUeJzt3Xu0ZGV95vHvQzcXG4SGpkOgm1sC0cFkVDxBjI6iJI6ipFkzhjExocdhFpMsk+ioo+jEKzKjThTQmTGyRIWAF8QL6KjIIF6SGYmnwXBrE3oISDdtd8sdwQvwmz/2e+iiu8+1qs+p4/l+1jqrar/73e9+662uemq/u2p3qgpJ0sK2y1x3QJI09wwDSZJhIEkyDCRJGAaSJAwDSRKGgXok+askb5nrfuwMSW5N8ts7od23J7mw3T8kyQNJFg16P+Ps+8Ykx83Svo5KMpokA273s0lePMg2NTOGwQLS3hAfam9Ydyf5X0kOHltfVX9cVWe0usclWT/Fdg9LUkkW76y+zwdV9YOq2quqHhl020k+nuRd2+zvKVX1jUHvaxxnAH9Zg/9h0nuAd01aSzudYbDwnFhVewEHApuAD87GThd6UMxnSQ4Eng98YdBtV9XfAXsnGRl025oew2CBqqqfAJcAR42VjX36TLIn8BXgoHYU8UCSg5Ic06YK7kuyKcn726bfarf3tLrPSvJvk/xtkrOS3Am8ve3j3yVZ245MLk9yaM/+z0lye2t/TZJ/0bPu7Uk+k+TCJPcnuT7JryV5U5LNbbsXTuWxJ9k9ydlJ7mh/ZyfZva3bN8mXkmxpffxSkpU92x6e5JutD1cA+/ese9wRUpJvJDmjjcP9Sb6WpLf+KUluS3JnkreMN5WV5DTgFcAb2vh+sZU/Vn+645NknyTnJdmYZEN73seb3vod4Jr2b2Zs+1uT/Kck1yX5cWvrgCRfafv/30n2bXX3aP26M8k9Sb6b5ICe9r8BvGQqz512HsNggUqyBPg3wHe2XVdVPwZeDNzRpj32qqo7gHOAc6pqb+BXgYvbJs9tt0tb3f/blp8J3AIcAJyZZBXwZuBfAcuBbwOf7Nn1d4GnAfsBnwA+k2SPnvUnAn8N7AtcC1xO9294BfBO4MNTfPj/GTi27eupwDHAX7R1uwAfAw4FDgEeAv57z7afANbQhcAZwOpJ9vUHwCuBXwJ2A14P3Rw88D/p3uQPBPZpj2M7VXUucBHw3ja+J46zr+mMz8eBh4EjgKcDLwT+/Tjt/gbwDzso/9d0QfFrbd9foXt+l7f9/nmrt7o9voOBZcAf043rmLV0z4PmkGGw8HwhyT3AvXQv5P82jW1/DhyRZP+qeqCqtguSbdxRVR+sqoer6iG6N4H/WlVrq+ph4L8ATxs7OqiqC6vqzlb/fcDuwJN62vt2VV3etv0M3ZvOu6vq58CngMOSLJ3C43gF8M6q2lxVW4B3AH/U+nBnVX22qh6sqvuBM4HnQXeCGPhN4C1V9dOq+hbwxUn29bGq+sf2+C+mCyCAlwFfrKq/qaqfAW8F+p2Pn9L4tE/lJwCvqaofV9Vm4Czg5eO0uxS4fwflH6yqTVW1gS7Yr66qa9sRxOfpQga6fzfLgCOq6pGqWlNV9/W0c3/bh+aQYbDwnFRVS4E9gD8Fvpnkl6e47al0nwK/3w71XzpJ/du3WT4UOKdNFdwD3AWE9ok4yevbFNK9bf0+9EzD0J3jGPMQ8KOek7VjnzT3msLjOAi4rWf5tlZGkiVJPtymb+6jmwJb2qZQDgLubkdOvdtO5Ic99x/s6d9B9IxPVT0I3DmFvk9kquNzKLArsLHnufgw3dHLjtwNPHEK+9t2eeyx/jXdUcqn2rTce5Ps2lP3icA9Ez4y7XSGwQLVPqF9DngEeM6Oquxgm5ur6vfp3jTeA1yS7vzCeJ9oty2/HfgPVbW05+8JVfV/2vmBNwAnA/u2wLqXLiwG7Q66N8Qxh7QygNfRHY08s02HjU2BBdgI7Nsec++2M7ER6D0X8QS6T8/jGeS3eG4Hfgrs3/M87F1VTxmn/nV0HwJmpKp+XlXvqKqjgN8CXgqc0lPlnwF/P9P2NRiGwQKVziq6+eW1O6iyCViWZJ+ebf4wyfKqepStn+QeBba021+ZZLd/BbwpyVNae/sk+b227ol0c9hbgMVJ3grsPbNHN6lPAn+RZHk7oftW4MKefjxEdzJ8P+BtYxtV1W3AKPCOJLsleQ7dXPlMXAKcmOS3kuxGd4J9ouDbxOTjOyVVtRH4GvC+JHsn2SXJryZ53jibXAEcvc35mylL8vwkv9GOru6jmzZ6tKfK8+jON2gOGQYLzxeTPED3ojwTWF1VN25bqaq+T/emeUubSjgIeBFwY9v+HODlVfVQm+I4E/jbVvfYHe24qj5Pd0TxqTYFcwPdiWrophG+Cvwj3dTLT9h+mmlQ3kX3pn4dcD1wDVu/63428ATgR3Qn17+6zbZ/QHdi/C66oLhgJh1oY/5ndHP5G4EHgM10n9h35DzgqDa+g/iK5yl0J7RvopsGuoTuRPaO+roJ+Dqwaob7+uXW/n10Hzy+STd1RJLfBB5oXzHVHIr/uY0095LsRXe0dWRV/dNc92db7dtP5wPHDPKHZ0k+C5xXVV8eVJuaGcNAmiNJTgSupJseeh/dEcfRO+FXvtKkJp0mSvLR9qOVG3rK9ktyRZKb2+3Yj0uS5ANJ1rUfoxzds83qVv/mJJN9N1taCFbRnbi+AziSbtrNINCcmPTIIMlz6eYzL6iqX29l7wXuqqp3Jzmd7tsfb0xyAt086Al0n3LOqapnthNxo8AI3bci1gDPqKq7d9YDkyRN3aRHBu2HNXdtU7yKbv6QdntST/kF1fkO3fezDwT+JXBFVd3VAuAKupORkqQhMNOLhx3Qvp4G3Y9qxq4zsoLHfwNkfSsbr3w76a7DchrAnnvu+YwnP/nJM+yiJC1Ma9as+VFVLZ/ONn1fSbKqKsnA5jnbdVjOBRgZGanR0dFBNS1JC0KSyX4Zv52Z/s5gU5v+Gbu87eZWvoHuYlRjVray8colSUNgpmFwGVuv1rgauLSn/JT2raJjgXvbdNLlwAvTXR54X7orJF7eR78lSQM06TRRkk8CxwH7p/ufr94GvBu4OMmpdL8WPblV/zLdN4nW0V2U65UAVXVXkjPoLlEM3RUjtz0pLUmaI0P9ozPPGUjS9CVZU1XT+t/jvDaRJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJPoMgyT/McmNSW5I8skkeyQ5PMnVSdYl+XSS3Vrd3dvyurb+sEE8AElS/2YcBklWAH8OjFTVrwOLgJcD7wHOqqojgLuBU9smpwJ3t/KzWj1J0hDod5poMfCEJIuBJcBG4AXAJW39+cBJ7f6qtkxbf3yS9Ll/SdIAzDgMqmoD8JfAD+hC4F5gDXBPVT3cqq0HVrT7K4Db27YPt/rLtm03yWlJRpOMbtmyZabdkyRNQz/TRPvSfdo/HDgI2BN4Ub8dqqpzq2qkqkaWL1/eb3OSpCnoZ5rot4F/qqotVfVz4HPAs4GlbdoIYCWwod3fABwM0NbvA9zZx/4lSQPSTxj8ADg2yZI29388cBNwFfCyVmc1cGm7f1lbpq3/elVVH/uXJA1IP+cMrqY7EXwNcH1r61zgjcBrk6yjOydwXtvkPGBZK38tcHof/ZYkDVCG+cP5yMhIjY6OznU3JGleSbKmqkams42/QJYkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIk+wyDJ0iSXJPl+krVJnpVkvyRXJLm53e7b6ibJB5KsS3JdkqMH8xAkSf3q98jgHOCrVfVk4KnAWuB04MqqOhK4si0DvBg4sv2dBnyoz31LkgZkxmGQZB/gucB5AFX1s6q6B1gFnN+qnQ+c1O6vAi6ozneApUkOnHHPJUkD08+RweHAFuBjSa5N8pEkewIHVNXGVueHwAHt/grg9p7t17eyx0lyWpLRJKNbtmzpo3uSpKnqJwwWA0cDH6qqpwM/ZuuUEABVVUBNp9GqOreqRqpqZPny5X10T5I0Vf2EwXpgfVVd3ZYvoQuHTWPTP+12c1u/ATi4Z/uVrUySNMdmHAZV9UPg9iRPakXHAzcBlwGrW9lq4NJ2/zLglPatomOBe3umkyRJc2hxn9v/GXBRkt2AW4BX0gXMxUlOBW4DTm51vwycAKwDHmx1JUlDoK8wqKrvASM7WHX8DuoW8Kp+9idJ2jn8BbIkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkBhAGSRYluTbJl9ry4UmuTrIuyaeT7NbKd2/L69r6w/rdtyRpMAZxZPBqYG3P8nuAs6rqCOBu4NRWfipwdys/q9WTJA2BvsIgyUrgJcBH2nKAFwCXtCrnAye1+6vaMm398a2+JGmO9XtkcDbwBuDRtrwMuKeqHm7L64EV7f4K4HaAtv7eVv9xkpyWZDTJ6JYtW/rsniRpKmYcBkleCmyuqjUD7A9VdW5VjVTVyPLlywfZtCRpHIv72PbZwO8mOQHYA9gbOAdYmmRx+/S/EtjQ6m8ADgbWJ1kM7APc2cf+JUkDMuMjg6p6U1WtrKrDgJcDX6+qVwBXAS9r1VYDl7b7l7Vl2vqvV1XNdP+SpMHZGb8zeCPw2iTr6M4JnNfKzwOWtfLXAqfvhH1Lkmagn2mix1TVN4BvtPu3AMfsoM5PgN8bxP4kSYPlL5AlSYaBJMkwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEmijzBIcnCSq5LclOTGJK9u5fsluSLJze1231aeJB9Isi7JdUmOHtSDkCT1p58jg4eB11XVUcCxwKuSHAWcDlxZVUcCV7ZlgBcDR7a/04AP9bFvSdIAzTgMqmpjVV3T7t8PrAVWAKuA81u184GT2v1VwAXV+Q6wNMmBM+65JGlgBnLOIMlhwNOBq4EDqmpjW/VD4IB2fwVwe89m61vZtm2dlmQ0yeiWLVsG0T1J0iT6DoMkewGfBV5TVff1rquqAmo67VXVuVU1UlUjy5cv77d7kqQp6CsMkuxKFwQXVdXnWvGmsemfdru5lW8ADu7ZfGUrkyTNsX6+TRTgPGBtVb2/Z9VlwOp2fzVwaU/5Ke1bRccC9/ZMJ0mS5tDiPrZ9NvBHwPVJvtfK3gy8G7g4yanAbcDJbd2XgROAdcCDwCv72LckaYBmHAZV9TdAxll9/A7qF/Cqme5PkrTz+AtkSZJhIEkyDCRJGAaSJBZKGFx0ERx2GOyyS3d70UVz3aOdb9gf87D3T1poqmpo/54BVYceWnXhhfWYCy/sypKprbvwwqolS6pg69+SJVu3m257k60bhvYmeszD3r9hH9vZbG8+933Y25vPfZ9omwYYrWm+3875G/5Ef8/Y0RvZRG9yO1q3bNnjy8b+xgZxuu1NtO5P/mQ42jv00B0/5mXLhrt/Ez0nwzK2s9XefO77sLc3n/s+UXt9hkG67YbTSFKjYwuHHtrd3nbb9hUnWjeeBA45ZPrtTbRu0SJ45JG5b+8HP+j+mUzVsPRvoudkWMZ2ttqbz30f9vbmc98nau/WWx9bTLKmqka2rzi++RMGab9vG+9NZLx145nsTWmQ+5rt9sZ7Qx32/s0kyOb7czUM+1po7c3nvk/U3qOP9ixOPwzmzwnkQw7p/qa7btkyWLLk8WVLlsCZZ86svYnWLVo0HO2deeaOH/OyZcPdv4mek2EZ29lqbz73fdjbm899n6i9fs31eYGdfs5gbN1MTrQO8/zgRO2NPbbpnEwfhv5N9JwMy9g6rz3/25vPfd+J5wymVXlOwmBQ3xwYz0zbm+jNbBjaG/bHO5M+DkvfZ6u9+dz3YW9vPvd9Cq+rmYTBcJ8zGBmp0dHRyStKkh7zi33OQJK00xgGkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJOYgDJK8KMk/JFmX5PTZ3r8kaXuzGgZJFgH/A3gxcBTw+0mOms0+SJK2N9tHBscA66rqlqr6GfApYNUs90GStI3Fs7y/FcDtPcvrgWf2VkhyGnBaW/xpkhtmqW/Dbn/gR3PdiSHhWGzlWGzlWGz1pOluMNthMKmqOhc4FyDJaFWNzHGXhoJjsZVjsZVjsZVjsVWS0eluM9vTRBuAg3uWV7YySdIcmu0w+C5wZJLDk+wGvBy4bJb7IEnaxqxOE1XVw0n+FLgcWAR8tKpunGCTc2enZ/OCY7GVY7GVY7GVY7HVtMciVbUzOiJJmkf8BbIkyTCQJA1xGCzky1Yk+WiSzb2/sUiyX5Irktzcbvedyz7OliQHJ7kqyU1Jbkzy6la+4MYjyR5J/i7J37exeEcrPzzJ1e218un25YxfeEkWJbk2yZfa8oIcB4Aktya5Psn3xr5WOt3XyFCGgZet4OPAi7YpOx24sqqOBK5sywvBw8Drquoo4FjgVe3fwkIcj58CL6iqpwJPA16U5FjgPcBZVXUEcDdw6hz2cTa9Gljbs7xQx2HM86vqaT2/tZjWa2Qow4AFftmKqvoWcNc2xauA89v984GTZrVTc6SqNlbVNe3+/XQv/hUswPGozgNtcdf2V8ALgEta+YIYiyQrgZcAH2nLYQGOwySm9RoZ1jDY0WUrVsxRX4bFAVW1sd3/IXDAXHZmLiQ5DHg6cDULdDza1Mj3gM3AFcD/A+6pqodblYXyWjkbeAPwaFtexsIchzEFfC3JmnZJH5jma2ToLkehyVVVJVlQ3wlOshfwWeA1VXVf90Gws5DGo6oeAZ6WZCnweeDJc9ylWZfkpcDmqlqT5Li57s+QeE5VbUjyS8AVSb7fu3Iqr5FhPTLwshXb25TkQIB2u3mO+zNrkuxKFwQXVdXnWvGCHQ+AqroHuAp4FrA0ydgHu4XwWnk28LtJbqWbQn4BcA4LbxweU1Ub2u1mug8JxzDN18iwhoGXrdjeZcDqdn81cOkc9mXWtLng84C1VfX+nlULbjySLG9HBCR5AvA7dOdQrgJe1qr9wo9FVb2pqlZW1WF07w1fr6pXsMDGYUySPZM8cew+8ELgBqb5GhnaXyAnOYFuXnDsshVnznGXZk2STwLH0V2SdxPwNuALwMXAIcBtwMlVte1J5l84SZ4DfBu4nq3zw2+mO2+woMYjyT+nOxG4iO6D3MVV9c4kv0L3CXk/4FrgD6vqp3PX09nTpoleX1UvXajj0B7359viYuATVXVmkmVM4zUytGEgSZo9wzpNJEmaRYaBJMkwkCQZBpIkDANJEoaBJAnDQJIE/H/rb7gr7l0ZRwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZA0lEQVR4nO3df7RdZX3n8ffHQIGACGhgIOFXx1iErhYnV2SWrtY6VqN1Cmtm6IpFjR1qKgun2KVLQTvjdFoq7cxYSy0qWiUMUSb1F5GWjkj9US2KN4rF8GNIC4ZMYhKqFBgrI/E7f+wnzSG5uffcm3vPOcl9v9Y66+zznP3s8+zn3HM+Zz/7x01VIUnSU4bdAEnSaDAQJEmAgSBJagwESRJgIEiSGgNBkgQYCOqR5H1J/uOw2zHbkpyWpJIcMgfL/nySX23TFyb5zGy/xj5e95QkjyVZMKDX+7Uk757lZR6W5J4kx8/mcjVzBsI8kuSBJP/Yvki+l+TPkpy86/mqen1V/Xab94VJNve53Dn7wj2QVNWaqnrJXCy7vXcv7nmtTVV1VFXtnIvX2+O1fwz4TeC/zuZyq+px4EPAW2dzuZo5A2H++ddVdRRwIrAN+KNBvOh8D4sD3HnAPVX1f+Zg2R8BViY5bA6WrWkyEOapqvoB8DHgzF1lSa5N8jtJjgRuBk5qWxOPJTkpyTlJxpM8kmRbkne1ql9s9w+3ef9lktcm+XKSP0jyXeA/tyGC/5ZkU6v/viRHtNc+NslNSXa0rZebkizpadvnW9v+ur3Gp5M8Pcma1p6vJTmtn3Vv67IuyXeTbEzyup7nzklyW5KHk2xN8p72C3nX8z/fhjn+Icl7gPQ899okX+p5XElen+S+tk5/nCTtuQVJ/nuSh5Lcn+QN+9rKSvI/gFOAT7d1f8ueW2XT7Z8kZyS5pfXBvUl+aZIuexnwhZ66u177V5I82Nbt9Umem+RvWt+9p2f+Zyb5Quuzh5L8z13PVdVm4HvAuVO9bxqAqvI2T27AA8CL2/RCYDVwXc/z1wK/06ZfCGzeo/5twKvb9FHAuW36NKCAQ3rmfS3wBPAfgEOAI4B3A+uA44CnAp8G3tnmfzrwb1u7ngr8KfCpnuV9HtgI/HPgacBdwP8GXtyWfx3w4X2s95PaR/fldjVwOHA2sAP4V+25ZXRfToe0encDb2zPPQN4BPh3wKHAb7R1/NWedf5Sz+sWcBNwDN0X+g5geXvu9W0dlgDHAp/dsw/39d7tY5367h/gSOBB4Ffac/8CeAg4ax+v/TXgggle+32tD18C/AD4FHA8sBjYDvxsm/+jwNvpfoAeDrxgj+WvA3592J8Pb+UWwjz0qSQP032x/TzTGxf+IfDMJM+oqseq6itTzL+lqv6oqp6g+8J4HfAbVfXdqnoU+F1gBUBV/X1Vfbyqvt+euwL42T2W9+Gq+tuq+ge6LZi/rarPtuX/KfCcqVag7TN5AfDWqvpBVd0BfBB4dWvH+qr6SlU9UVUPAO/vacfLgbuq6mNV9UO6gPvOFC95ZVU9XFWbgM/RBRDALwF/WFWbq+p7wJVTtb0P/fbPK4AHqurDbT2/DnycLugmcgzw6ATlv9368DPA/wU+WlXbqxta+que1/shcCpwUpv/S3ss59H2GhoyA2H+Ob+qjgEOA94AfCHJP+uz7kXAs4B72hDEK6aY/8Ge6UV0v/7XtyGFh4G/aOUkWZjk/Um+neQRumGoY/Lko2i29Uz/4wSPj+pjHU4CdgXSLt+m+1VLkme14arvtHb8Lt2Wwa66/7ROVVV7rONEegPj+z1tfNKy+lhOP/rtn1OB5+16H9p7cSGwr7+D79Fttc309d5CN7R2e5INSf79Hst5KvDwPl5bA2QgzFNVtbOqPgHspPvFvNcsE9S5r6peSTcs8HvAx9Ltb9jXJXN7yx+i+5I4q6qOabenVbeDG+BNwE8Az6uqo4GfaeVhdm0BjkvS+wV3CrBrh+l7gXuApa0db+tpw1bgn47KavsDTmZmttINF+0y1XJm87LEDwJf6HkfjqnuiKWL9zH/39D9EJiRqvpOVb2uqk4Cfg24Oskze2Z5NvDNmS5fs8dAmKfSOY9u/PruCWbZBjw9ydN66rwqyaKq+hG7f9HtpBsb/xHw4/t6vVbnA8AfpB13nmRxkpe2WZ5KFxgPJzkOeMf+rN8k7XgQ+GvgnUkOT/JTdFs+a3ra8QjwWJIzgN4vyT8Dzkryb9rO3F9n37+qp7IWuLT1wTFMfejlNibp32m6CXhWklcnObTdnpvk2fuY/8/Ze/iub0kuyO4DBL5HF24723OL6fYpTTX8qAEwEOafTyd5jO5L7wpgZVVt2HOmqrqHbmfg37VhhZOA5cCGVv8PgRVtTPj7bVlfbvPu64iRt9Lt+PxKG475LN1WAXTj8UfQbUl8hW44aa68km7H6Bbgk8A7quqW9tybgV+mG9f+ANB7RMxDwAV04/1/DywFvjzDNnwA+Azdr+9v0H3pPkH7opzAO4HfbP375hm+JgBtuOwldPtvttANa/0e3TDiRD4NnNH+BmbiucBX29/NOuDSqrq/PffLwOrqzknQkKUbBpU0TEleBryvqk4ddlsmkmQVcGZVvXEWl3kY3VDRz1TV9tlarmbOQJCGIN35Fz9Ht5VwAt1RPl+ZzS9cabr6GjJKd9r8nUnuSDLeyo5rJ7bc1+6P7Zn/8nQn/NzbM0ZMkmVtORuTXNV2yknzUYDfohtT/wbdfpz/NNQWad7rawshyQPAWBtD3VX2+3SH712Z5DLg2Kp6a5Iz6caez6E7tO6zwLOqameS24FL6caI/xy4qqpunu2VkiRN3/7sVD6P7kxX2v35PeU3VNXjbcfRRuCcJCcCR1fVbe347et66kiShqzfC44V8JkkBby/qq4BTqiqrQBVtTW7L2G7mCcfQra5lf2wTe9Zvpe2A2sVwJFHHrnsjDPO6LOZkiSA9evXP1RVi6ZTp99AeH5VbWlf+rckuWeSeSfaL1CTlO9d2AXONQBjY2M1Pj7eZzMlSQBJvj3dOn0NGVXVlna/ne647XOAbW0YiHa/67CxzTz5rMsldMc6b+bJZ2buKpckjYApAyHJkbtO82+XKXgJ8C26E0xWttlWAje26XXAinSXOj6d7uSd29vw0qNJzm1HF72mp44kacj6GTI6AfhkO0L0EOAjVfUXSb4GrE1yEbCJ7gxOqmpDkrV0l999Arikdv9Xp4vpLrF8BN3VGD3CSJJGxMifmOY+BEmaviTrq2psOnW8lpEkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCphEISRYk+UaSm9rj45LckuS+dn9sz7yXJ9mY5N4kL+0pX5bkzvbcVUkyu6sjSZqp6WwhXArc3fP4MuDWqloK3Noek+RMYAVwFrAcuDrJglbnvcAqYGm7Ld+v1kuSZk1fgZBkCfALwAd7is8DVrfp1cD5PeU3VNXjVXU/sBE4J8mJwNFVdVtVFXBdTx1J0pD1u4XwbuAtwI96yk6oqq0A7f74Vr4YeLBnvs2tbHGb3rN8L0lWJRlPMr5jx44+myhJ2h9TBkKSVwDbq2p9n8ucaL9ATVK+d2HVNVU1VlVjixYt6vNlJUn745A+5nk+8ItJXg4cDhyd5HpgW5ITq2prGw7a3ubfDJzcU38JsKWVL5mgXJI0AqbcQqiqy6tqSVWdRrez+C+r6lXAOmBlm20lcGObXgesSHJYktPpdh7f3oaVHk1ybju66DU9dSRJQ9bPFsK+XAmsTXIRsAm4AKCqNiRZC9wFPAFcUlU7W52LgWuBI4Cb202SNALSHfAzusbGxmp8fHzYzZCkA0qS9VU1Np06nqksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVIz+oGwfj2cdhqsWTPslkjSQW30AwHg29+GVasMBUmaQwdGIAB8//vw9rcPuxWSdNA6cAIBYNOmYbdAkg5aB1YgnHLKsFsgSQetAycQFi6EK64Ydisk6aB1YATCqafCNdfAhRcOuyWSdNDan3+hORjLloH/MU2S5tyBsYUgSZpzBoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiSgj0BIcniS25N8M8mGJL/Vyo9LckuS+9r9sT11Lk+yMcm9SV7aU74syZ3tuauSZG5WS5I0Xf1sITwOvKiqfho4G1ie5FzgMuDWqloK3Noek+RMYAVwFrAcuDrJgras9wKrgKXttnz2VkWStD+mDITqPNYeHtpuBZwHrG7lq4Hz2/R5wA1V9XhV3Q9sBM5JciJwdFXdVlUFXNdTR5I0ZH3tQ0iyIMkdwHbglqr6KnBCVW0FaPfHt9kXAw/2VN/cyha36T3LJ3q9VUnGk4zv2LFjGqsjSZqpvgKhqnZW1dnAErpf+z85yewT7ReoSconer1rqmqsqsYWLVrUTxMlSftpWkcZVdXDwOfpxv63tWEg2v32Nttm4OSeakuALa18yQTlkqQR0M9RRouSHNOmjwBeDNwDrANWttlWAje26XXAiiSHJTmdbufx7W1Y6dEk57aji17TU0eSNGSH9DHPicDqdqTQU4C1VXVTktuAtUkuAjYBFwBU1YYka4G7gCeAS6pqZ1vWxcC1wBHAze0mSRoB6Q74GV1jY2M1Pj4+7GZI0gElyfqqGptOHc9UliQBBoIkqTEQJEmAgSBJagyEQVqzBk47DZ7ylO5+zZr53Q51RuX9GIV2jEIbRqUdw2hDVY30bdmyZTUrrr++6tRTq5Lu/vrrB7u866+vWriwCnbfFi7cv3bMZJ1GqR2z+X7MlH8Xo9OOUWjDqLRjFtoAjNc0v2+H/oU/1W1WAmG23+CZLO/UU588/67bqacOrg2j0o5R+MDNRTv8u9i/doxCG0alHbPQBgNhX2b7DZ7J8pKJ6ySDa8OotGMUPnBz0Q7/LvavHaPQhlFpxyy0wUDYl9l+g2eyvNn+8pnpOo1CO0bhAzcX7fDvYv/aMQptGJV2DGkLYX7sVD7llOmVz8XyrrgCFi58ctnChV35oNowKu2Y7fdj06bplc9VO/y72L92jEIbRqUds92Gfk03QQZ9O2j2IeyqN1s7MPdnnYbdjtl+P2b6a8q/i9Frxyi0YVTasZ9twCGjSQz7aJK5MAptmGk7RuEDN9vtmIvlHahtGJV2jEIbhtSOmQSCF7fTwWHNGnj727tholNO6TatL7xw2K2ShmYmF7fr5/LX0ui78EIDQNpP82OnsiRpSgaCJAkwECRJjYEgSQIMBElSYyCMiskudTuTy+COwuV7D1aDfD98H/szCp+Rg+G9mu6JC4O+7XVi2mQneMz2CVIzPZlkNi91O8gzgUehL+aiHbNZZ9Dvx2T1ht0Xg2zDZPVG4TMy6LOR+6jHQX+m8iC/OOfqQzyRyS69MKiriY5KX4xCOE5WZ5BXd52s3ij0xaiE4yh8RmZ7eTPtix4HfyAM8otzLj7E+zLZ1RAHdTXRUemLUQjHyeoM8uquk9Ubhb4YlXAchc/IIK9o2me9gz8QBvnFORcf4n0ZhQ/dqPTFKITjKHwRT1VvFPpivoXjbLdhjj9XMwmEA2un8mSXkZ3tyzDP9NK5s32p25lcBncmdUalLwb5Hs+kzqDej6nqjUJfDPLS56Pwnsx2Gwb5uerXdBNk0Ld5sQ9hV71h7rgblb4YhTHrUdmZO1m9UeiLUdmHMFk/TbXM2fqMzMXy9rMeB/2Q0a7OGNQX5xweATCSRqUvhh2OM60zaKPQF6MQjoM0222Yw76YSSB4+WtJOgjN5PLXB9Y+BEnSnDEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkZspASHJyks8luTvJhiSXtvLjktyS5L52f2xPncuTbExyb5KX9pQvS3Jne+6qJJmb1ZIkTVc/WwhPAG+qqmcD5wKXJDkTuAy4taqWAre2x7TnVgBnAcuBq5MsaMt6L7AKWNpuy2dxXSRJ+2HKQKiqrVX19Tb9KHA3sBg4D1jdZlsNnN+mzwNuqKrHq+p+YCNwTpITgaOr6rZ2WvV1PXUkSUM2rX0ISU4DngN8FTihqrZCFxrA8W22xcCDPdU2t7LFbXrP8oleZ1WS8STjO3bsmE4TJUkz1HcgJDkK+Djwxqp6ZLJZJyirScr3Lqy6pqrGqmps0aJF/TZRkrQf+gqEJIfShcGaqvpEK97WhoFo99tb+Wbg5J7qS4AtrXzJBOWSpBHQz1FGAf4EuLuq3tXz1DpgZZteCdzYU74iyWFJTqfbeXx7G1Z6NMm5bZmv6akjSRqyQ/qY5/nAq4E7k9zRyt4GXAmsTXIRsAm4AKCqNiRZC9xFd4TSJVW1s9W7GLgWOAK4ud0kSSPA/4cgSQch/x+CJGnGDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkS0EcgJPlQku1JvtVTdlySW5Lc1+6P7Xnu8iQbk9yb5KU95cuS3NmeuypJZn91JEkz1c8WwrXA8j3KLgNuraqlwK3tMUnOBFYAZ7U6VydZ0Oq8F1gFLG23PZcpSRqiKQOhqr4IfHeP4vOA1W16NXB+T/kNVfV4Vd0PbATOSXIicHRV3VZVBVzXU0eSNAJmug/hhKraCtDuj2/li4EHe+bb3MoWt+k9yyeUZFWS8STjO3bsmGETJUnTMds7lSfaL1CTlE+oqq6pqrGqGlu0aNGsNU6StG8zDYRtbRiIdr+9lW8GTu6ZbwmwpZUvmaBckjQiZhoI64CVbXolcGNP+YokhyU5nW7n8e1tWOnRJOe2o4te01NHkjQCDplqhiQfBV4IPCPJZuAdwJXA2iQXAZuACwCqakOStcBdwBPAJVW1sy3qYrojlo4Abm43SdKISHfQz+gaGxur8fHxYTdDkg4oSdZX1dh06nimsiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQKGEAhJlie5N8nGJJcN+vUlSRMbaCAkWQD8MfAy4EzglUnOHGQbJEkTG/QWwjnAxqr6u6r6f8ANwHkDboMkaQKHDPj1FgMP9jzeDDxvz5mSrAJWtYePJ/nWANp2IHgG8NCwGzEi7Ivd7Ivd7IvdfmK6FQYdCJmgrPYqqLoGuAYgyXhVjc11ww4E9sVu9sVu9sVu9sVuScanW2fQQ0abgZN7Hi8Btgy4DZKkCQw6EL4GLE1yepIfA1YA6wbcBknSBAY6ZFRVTyR5A/C/gAXAh6pqwxTVrpn7lh0w7Ivd7Ivd7Ivd7Ivdpt0XqdprCF+SNA95prIkCTAQJEnNyAbCfL7ERZIPJdnee/5FkuOS3JLkvnZ/7DDbOChJTk7yuSR3J9mQ5NJWPu/6I8nhSW5P8s3WF7/VyuddX+ySZEGSbyS5qT2el32R5IEkdya5Y9fhpjPpi5EMBC9xwbXA8j3KLgNuraqlwK3t8XzwBPCmqno2cC5wSftbmI/98Tjwoqr6aeBsYHmSc5mffbHLpcDdPY/nc1/8XFWd3XMexrT7YiQDgXl+iYuq+iLw3T2KzwNWt+nVwPmDbNOwVNXWqvp6m36U7sO/mHnYH9V5rD08tN2KedgXAEmWAL8AfLCneF72xT5Muy9GNRAmusTF4iG1ZVScUFVbofuSBI4fcnsGLslpwHOArzJP+6MNkdwBbAduqap52xfAu4G3AD/qKZuvfVHAZ5Ksb5f+gRn0xaAvXdGvvi5xofkjyVHAx4E3VtUjyUR/Ige/qtoJnJ3kGOCTSX5yyE0aiiSvALZX1fokLxxyc0bB86tqS5LjgVuS3DOThYzqFoKXuNjbtiQnArT77UNuz8AkOZQuDNZU1Sda8bztD4Cqehj4PN2+pvnYF88HfjHJA3RDyi9Kcj3zsy+oqi3tfjvwSbph92n3xagGgpe42Ns6YGWbXgncOMS2DEy6TYE/Ae6uqnf1PDXv+iPJorZlQJIjgBcD9zAP+6KqLq+qJVV1Gt33w19W1auYh32R5MgkT901DbwE+BYz6IuRPVM5ycvpxgh3XeLiiuG2aHCSfBR4Id2lfLcB7wA+BawFTgE2ARdU1Z47ng86SV4A/BVwJ7vHit9Gtx9hXvVHkp+i2zm4gO7H3Nqq+i9Jns4864tebcjozVX1ivnYF0l+nG6rALrdAB+pqitm0hcjGwiSpMEa1SEjSdKAGQiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLz/wFJLZPEaCWwrAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ "import time\n", "import matplotlib.pyplot as plt\n", + "from pynq import Bitstream\n", + "\n", + "length = 50\n", + "time_log = []\n", + "bits = Bitstream(PL.bitfile_name)\n", + "for i in range(length):\n", + " start = time.time()\n", + " bits.download()\n", + " end = time.time()\n", + " time_log.append((end-start)*1000)\n", "\n", + "%matplotlib inline\n", + "plt.plot(range(length), time_log, 'ro')\n", + "plt.title('Bitstream loading time (ms)')\n", + "plt.axis([0, length, 0, 5000])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, using the Overlay object, the first download of the overlay is cached and stored in a global state file. If the bitstream we want to upload doesn't change the Overlay class simply bypasses the download and allows quick access to interact with the PL without the download overhead." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ9UlEQVR4nO3de5RlZX3m8e9jg4hc5NY40M1NbUTIMu1QIllegvECOo5gJjhNEkWjtrBgAhldKiYzmgvRJN5CjJBGERgRxAvSGsmIjpdoQKxW5E5opIWy2+5GRHBUxm5/88d+yz401V1Vp05XVVvfz1pnnX3evd93v+et6vPUfvfep1NVSJL0qJnugCRpdjAQJEmAgSBJagwESRJgIEiSGgNBkgQYCOqR5Lwk/2Om+zFoSQ5OUkl22AZtfznJa9vyHyT5/KD3sYX9HpjkJ0nmTdP+Xp/kfQNuc6cktyXZd5Dtqn8GwhySZFWSn7UPkh8l+eckB4yur6pTquov27bHJBmZYLvb7AN3e1JVl1TVC7dF2+1n9/yefd1dVbtW1cZtsb/N9v1o4M+Avxtku1X1EHAB8OZBtqv+GQhzz3+uql2B/YC1wD9Mx07nelhs544Hbquq72+Dtj8KnJxkp23QtibJQJijqurnwCeAw0fLklyY5K+S7AJcBezfjiZ+kmT/JEclGU7yQJK1Sd7Tqn61Pd/ftv2tJK9K8vUk701yH/D2NkXwriR3t/rnJdm57XvPJJ9Nsr4dvXw2ycKevn259e3f2j4+k2TvJJe0/nwzycETee/tvSxPcl+SlUle17PuqCTXJLk/yZok729/IY+uf0Gb5vhxkvcD6Vn3qiRf63ldSU5Jckd7T/+YJG3dvCTvTnJvkruSnL6lo6wk/ws4EPhMe+9v2vyobLLjk+SwJFe3Mbg9ycu3MmQvAr7SU3d0369Ock97b6ckeXqSG9rYvb9n+ycl+Uobs3uTfGx0XVWNAD8Cjh7v56ZpUFU+5sgDWAU8vy0/FrgIuLhn/YXAX7XlY4CRzepfA7yiLe8KHN2WDwYK2KFn21cBG4D/BuwA7Ay8D1gO7AXsBnwGeEfbfm/gv7R+7QZ8HPh0T3tfBlYCTwQeB9wC/Dvw/Nb+xcCHt/C+H9Y/ug+3DwCPARYD64HntXVH0n047dDq3Qqc2dbtAzwA/B6wI/An7T2+tuc9f61nvwV8FtiD7gN9PXBcW3dKew8LgT2BL2w+hlv62W3hPU14fIBdgHuAV7d1/xG4FzhiC/v+JnDiGPs+r43hC4GfA58G9gUWAOuA327bXwr8Kd0foI8BnrVZ+8uBP57pfx8+yiOEOejTSe6n+2B7AZObF/4F8KQk+1TVT6rq2nG2X11V/1BVG+g+MF4H/ElV3VdVDwJ/DSwBqKofVtUnq+qnbd3ZwG9v1t6Hq+rOqvox3RHMnVX1hdb+x4GnjfcG2jmTZwFvrqqfV9X1wAeBV7R+rKiqa6tqQ1WtAv6ppx8vBm6pqk9U1S/oAu4H4+zynVV1f1XdDXyJLoAAXg78fVWNVNWPgHeO1/cJmOj4vARYVVUfbu/zW8An6YJuLHsAD45R/pdtDD8P/F/g0qpaV93U0r/27O8XwEHA/m37r23WzoNtH5phBsLcc0JV7QHsBJwOfCXJf5hg3dcAhwK3tSmIl4yz/T09y/Pp/vpf0aYU7gf+pZWT5LFJ/inJ95I8QDcNtUcefhXN2p7ln43xetcJvIf9gdFAGvU9ur9qSXJom676QevHX9MdGYzW/dV7qqra7D2OpTcwftrTx4e1NYF2JmKi43MQ8IzRn0P7WfwBsKXfgx/RHbX1u7830U2tXZfk5iR/tFk7uwH3b2HfmkYGwhxVVRur6lPARrq/mB+xyRh17qiqk+imBf4G+ES68w1b+src3vJ76T4kjqiqPdrjcdWd4AZ4A/Bk4BlVtTvwnFYeBms1sFeS3g+4A4HRE6bnArcBi1o/3trThzXAr67KaucDDqA/a+imi0aN184gv5b4HuArPT+HPaq7YunULWx/A90fAn2pqh9U1euqan/g9cAHkjypZ5OnAN/pt30NjoEwR6VzPN389a1jbLIW2DvJ43rq/GGS+VX1Szb9RbeRbm78l8ATtrS/Vud84L1p150nWZDk2LbJbnSBcX+SvYC3TeX9baUf9wD/BrwjyWOSPJXuyOeSnn48APwkyWFA74fkPwNHJPnddjL3j9nyX9XjuRw4o43BHox/6eVatjK+k/RZ4NAkr0iyY3s8PclTtrD953jk9N2EJTkxmy4Q+BFduG1s6xbQnVMab/pR08BAmHs+k+QndB96ZwMnV9XNm29UVbfRnQz8bptW2B84Dri51f97YEmbE/5pa+vrbdstXTHyZroTn9e26Zgv0B0VQDcfvzPdkcS1dNNJ28pJdCdGVwNXAG+rqqvbujcCv083r30+0HtFzL3AiXTz/T8EFgFf77MP5wOfp/vr+9t0H7obaB+UY3gH8GdtfN/Y5z4BaNNlL6Q7f7Oablrrb+imEcfyGeCw9jvQj6cD32i/N8uBM6rqrrbu94GLqrsnQTMs3TSopJmU5EXAeVV10Ez3ZSxJlgKHV9WZA2xzJ7qpoudU1bpBtav+GQjSDEh3/8Vz6Y4SHk93lc+1g/zAlSZr3CmjJAck+VKSW9sVAme08r3ajS13tOc9e+qcle6Gn9t75ohJcmSSG9u6c9pJOWkuCvDndHPq36Y7j/M/Z7RHmvPGPUJIsh+wX1V9q12ZsQI4ge4mnPuq6p1J3gLsWVVvTnI43dzzUXSX1n0BOLSqNia5DjiDbo74c8A5VXXVtnlrkqTJGPcIoarWtBtXRk9G3Up3zfbxdHe60p5PaMvHA5dV1UPtxNFK4KgWLLtX1TXt+u2Le+pIkmbYpL5wrH0XytOAbwCPr6o10IVGNn2F7QIefgnZSCv7RVvevHys/SwFlgLssssuRx522GGT6aYkzXkrVqy4t6rmT6bOhAMhya50J77OrKoHtjL9P9aK2kr5IwurlgHLAIaGhmp4eHii3ZQkAUm+N9k6E7oPIcmOdGFwSbu7FWBtmwYaPc8wetnYCA+/63Ih3bXOIzz8zszRcknSLDCRq4wCfAi4tare07NqOXByWz4ZuLKnfEm6rzo+hO7mneva9NKDSY5ubb6yp44kaYZNZMromXTfBHljkutb2Vvp7ta8PMlrgLvp7uCkqm5Ocjnd1+9uAE6rTf+r06l0X7G8M923MXqFkSTNErP+xjTPIUjS5CVZUVVDk6njdxlJkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1IwbCEkuSLIuyU09ZR9Lcn17rBr9v5aTHJzkZz3rzuupc2SSG5OsTHJOkmyTdyRJ6ssOE9jmQuD9wMWjBVX1X0eXk7wb+HHP9ndW1eIx2jkXWApcC3wOOA64atI9liRtE+MeIVTVV4H7xlrX/sp/OXDp1tpIsh+we1VdU1VFFy4nTLq3kqRtZqrnEJ4NrK2qO3rKDkny7SRfSfLsVrYAGOnZZqSVSZJmiYlMGW3NSTz86GANcGBV/TDJkcCnkxwBjHW+oLbUaJKldNNLHHjggVPsoiRpIvo+QkiyA/C7wMdGy6rqoar6YVteAdwJHEp3RLCwp/pCYPWW2q6qZVU1VFVD8+fP77eLkqRJmMqU0fOB26rqV1NBSeYnmdeWnwAsAr5bVWuAB5Mc3c47vBK4cgr7liQN2EQuO70UuAZ4cpKRJK9pq5bwyJPJzwFuSPId4BPAKVU1ekL6VOCDwEq6IwevMJKkWSTdRT+z19DQUA0PD890NyRpu5JkRVUNTaaOdypLkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiRgAoGQ5IIk65Lc1FP29iTfT3J9e7y4Z91ZSVYmuT3JsT3lRya5sa07J0kG/3YkSf2ayBHChcBxY5S/t6oWt8fnAJIcDiwBjmh1PpBkXtv+XGApsKg9xmpTkjRDxg2EqvoqcN8E2zseuKyqHqqqu4CVwFFJ9gN2r6prqqqAi4ET+uyzJGkbmMo5hNOT3NCmlPZsZQuAe3q2GWllC9ry5uVjSrI0yXCS4fXr10+hi5Kkieo3EM4FnggsBtYA727lY50XqK2Uj6mqllXVUFUNzZ8/v88uSpImo69AqKq1VbWxqn4JnA8c1VaNAAf0bLoQWN3KF45RLkmaJfoKhHZOYNTLgNErkJYDS5LslOQQupPH11XVGuDBJEe3q4teCVw5hX5LkgZsh/E2SHIpcAywT5IR4G3AMUkW0037rAJeD1BVNye5HLgF2ACcVlUbW1On0l2xtDNwVXtIkmaJdBf9zF5DQ0M1PDw8092QpO1KkhVVNTSZOt6pLEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVIzbiAkuSDJuiQ39ZT9XZLbktyQ5Ioke7Tyg5P8LMn17XFeT50jk9yYZGWSc5Jkm7wjSVJfJnKEcCFw3GZlVwO/UVVPBf4dOKtn3Z1Vtbg9TukpPxdYCixqj83blCTNoHEDoaq+Cty3Wdnnq2pDe3ktsHBrbSTZD9i9qq6pqgIuBk7oq8eSpG1iEOcQ/gi4quf1IUm+neQrSZ7dyhYAIz3bjLSyMSVZmmQ4yfD69esH0EVJ0nimFAhJ/hTYAFzSitYAB1bV04D/Dnw0ye7AWOcLakvtVtWyqhqqqqH58+dPpYuSpAnaod+KSU4GXgI8r00DUVUPAQ+15RVJ7gQOpTsi6J1WWgis7nffkqTB6+sIIclxwJuBl1bVT3vK5yeZ15afQHfy+LtVtQZ4MMnR7eqiVwJXTrn3kqSBGfcIIcmlwDHAPklGgLfRXVW0E3B1u3r02nZF0XOAv0iyAdgInFJVoyekT6W7YmlnunMOvecdJEkzLG22Z9YaGhqq4eHhme6GJG1XkqyoqqHJ1PFOZUkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKacQMhyQVJ1iW5qadsryRXJ7mjPe/Zs+6sJCuT3J7k2J7yI5Pc2Nadk/afMUuSZoeJHCFcCBy3WdlbgC9W1SLgi+01SQ4HlgBHtDofSDKv1TkXWAosao/N25QkzaBxA6Gqvgrct1nx8cBFbfki4ISe8suq6qGqugtYCRyVZD9g96q6pqoKuLinjiRpFuj3HMLjq2oNQHvet5UvAO7p2W6klS1oy5uXjynJ0iTDSYbXr1/fZxclSZMx6JPKY50XqK2Uj6mqllXVUFUNzZ8/f2CdkyRtWb+BsLZNA9Ge17XyEeCAnu0WAqtb+cIxyiVJs0S/gbAcOLktnwxc2VO+JMlOSQ6hO3l8XZtWejDJ0e3qolf21JEkzQI7jLdBkkuBY4B9kowAbwPeCVye5DXA3cCJAFV1c5LLgVuADcBpVbWxNXUq3RVLOwNXtYckaZZId9HP7DU0NFTDw8Mz3Q1J2q4kWVFVQ5Op453KkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDV9B0KSJye5vufxQJIzk7w9yfd7yl/cU+esJCuT3J7k2MG8BUnSIOzQb8Wquh1YDJBkHvB94Arg1cB7q+pdvdsnORxYAhwB7A98IcmhVbWx3z5IkgZnUFNGzwPurKrvbWWb44HLquqhqroLWAkcNaD9S5KmaFCBsAS4tOf16UluSHJBkj1b2QLgnp5tRlrZIyRZmmQ4yfD69esH1EVJ0tZMORCSPBp4KfDxVnQu8ES66aQ1wLtHNx2jeo3VZlUtq6qhqhqaP3/+VLsoSZqAQRwhvAj4VlWtBaiqtVW1sap+CZzPpmmhEeCAnnoLgdUD2L8kaQAGEQgn0TNdlGS/nnUvA25qy8uBJUl2SnIIsAi4bgD7lyQNQN9XGQEkeSzwAuD1PcV/m2Qx3XTQqtF1VXVzksuBW4ANwGleYSRJs8eUAqGqfgrsvVnZK7ay/dnA2VPZpyRp2/BOZUkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKaKQVCklVJbkxyfZLhVrZXkquT3NGe9+zZ/qwkK5PcnuTYqXZekjQ4gzhCeG5VLa6qofb6LcAXq2oR8MX2miSHA0uAI4DjgA8kmTeA/UuSBmBbTBkdD1zUli8CTugpv6yqHqqqu4CVwFHbYP+SpD5MNRAK+HySFUmWtrLHV9UagPa8bytfANzTU3eklT1CkqVJhpMMr1+/fopdlCRNxA5TrP/MqlqdZF/g6iS3bWXbjFFWY21YVcuAZQBDQ0NjbiNJGqwpHSFU1er2vA64gm4KaG2S/QDa87q2+QhwQE/1hcDqqexfkjQ4fQdCkl2S7Da6DLwQuAlYDpzcNjsZuLItLweWJNkpySHAIuC6fvcvSRqsqUwZPR64IsloOx+tqn9J8k3g8iSvAe4GTgSoqpuTXA7cAmwATquqjVPqvSRpYPoOhKr6LvCbY5T/EHjeFuqcDZzd7z4lSduOdypLkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1PQdCEkOSPKlJLcmuTnJGa387Um+n+T69nhxT52zkqxMcnuSYwfxBiRJg9H3/6kMbADeUFXfSrIbsCLJ1W3de6vqXb0bJzkcWAIcAewPfCHJoVW1cQp9kCQNSN9HCFW1pqq+1ZYfBG4FFmylyvHAZVX1UFXdBawEjup3/5KkwRrIOYQkBwNPA77Rik5PckOSC5Ls2coWAPf0VBth6wEiSZpGUw6EJLsCnwTOrKoHgHOBJwKLgTXAu0c3HaN6baHNpUmGkwyvX79+ql2UJE3AlAIhyY50YXBJVX0KoKrWVtXGqvolcD6bpoVGgAN6qi8EVo/VblUtq6qhqhqaP3/+VLooSZqgqVxlFOBDwK1V9Z6e8v16NnsZcFNbXg4sSbJTkkOARcB1/e5fkjRYU7nK6JnAK4Abk1zfyt4KnJRkMd100Crg9QBVdXOSy4Fb6K5QOs0rjCRp9ug7EKrqa4x9XuBzW6lzNnB2v/uUJG073qksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAGQiEJMcluT3JyiRvGbfCihVw8MFwySXd60su6V4/6lEPL+933aDbm859zfb2tue+z/b2tue+Oxbbdiymoqqm7QHMA+4EngA8GvgOcPjW6hwJVVD12MdWnXpq9zxaNlr+kY90j8muG3R707mv2d7e9tz32d7e9tx3x2LbjkUPYHiyn9FpH9TTIslvAW+vqmPb67NaKL1jS3WGkhoefTFvHmzc+MiNDjqoe/7e9ya3btDtTee+Znt723PfZ3t723PfHYtt195BB8GqVb96mWRFVQ09csMtm+5A+D3guKp6bXv9CuAZVXX6ZtstBZYC7A1HHjxtPZSk7dcKWNHz8slVtdtk6u8w4P6MJ2OUPSKRqmoZsAwgyfC9k0y5X1dJhieb+L+uHItNHItNHItNkgyPv9XDTfdJ5RHggJ7XC4HV09wHSdIYpjsQvgksSnJIkkcDS4Dl09wHSdIYpnXKqKo2JDkd+N90VxxdUFU3j1Nt2bbv2XbDsdjEsdjEsdjEsdhk0mMxrSeVJUmzl3cqS5IAA0GS1MzaQJj0V1z8GklyQZJ1SW7qKdsrydVJ7mjPe85kH6dLkgOSfCnJrUluTnJGK59z45HkMUmuS/KdNhZ/3srn3FiMSjIvybeTfLa9npNjkWRVkhuTXD96uWk/YzErAyHJPOAfgRcBhwMnJTl8Zns1rS4Ejtus7C3AF6tqEfDF9nou2AC8oaqeAhwNnNZ+F+bieDwE/E5V/SawGDguydHMzbEYdQZwa8/ruTwWz62qxT33YUx6LGZlIABHASur6rtV9f+Ay4DjZ7hP06aqvgrct1nx8cBFbfki4ITp7NNMqao1VfWttvwg3T/+BczB8WhfUfOT9nLH9ijm4FgAJFkI/Cfggz3Fc3IstmDSYzFbA2EBcE/P65FWNpc9vqrWQPchCew7w/2ZdkkOBp4GfIM5Oh5tiuR6YB1wdVXN2bEA3ge8CfhlT9lcHYsCPp9kRfvqH+hjLKb7qysmakJfcaG5I8muwCeBM6vqgWSsX5Fff1W1EVicZA/giiS/McNdmhFJXgKsq6oVSY6Z4e7MBs+sqtVJ9gWuTnJbP43M1iMEv+LikdYm2Q+gPa+b4f5MmyQ70oXBJVX1qVY8Z8cDoKruB75Md65pLo7FM4GXJllFN6X8O0k+wtwcC6pqdXteB1xBN+0+6bGYrYHgV1w80nLg5LZ8MnDlDPZl2qQ7FPgQcGtVvadn1ZwbjyTz25EBSXYGng/cxhwci6o6q6oWVtXBdJ8P/6eq/pA5OBZJdkmy2+gy8ELgJvoYi1l7p3KSF9PNEY5+xcXZM9uj6ZPkUuAYYB9gLfA24NPA5cCBwN3AiVW1+YnnXztJngX8K3Ajm+aK30p3HmFOjUeSp9KdHJxH98fc5VX1F0n2Zo6NRa82ZfTGqnrJXByLJE+gOyqA7jTAR6vq7H7GYtYGgiRpes3WKSNJ0jQzECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpOb/A1tM7J3zwnCkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ "length = 50\n", "time_log = []\n", "for i in range(length):\n", @@ -229,14 +295,14 @@ "%matplotlib inline\n", "plt.plot(range(length), time_log, 'ro')\n", "plt.title('Bitstream loading time (ms)')\n", - "plt.axis([0, length, 0, 1000])\n", + "plt.axis([0, length, 0, 2000])\n", "plt.show()" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -250,9 +316,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.10.4" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/pynq/notebooks/common/zynq_clocks.ipynb b/pynq/notebooks/common/zynq_clocks.ipynb index b67298ec75..36f4b0284a 100755 --- a/pynq/notebooks/common/zynq_clocks.ipynb +++ b/pynq/notebooks/common/zynq_clocks.ipynb @@ -44,7 +44,7 @@ "from pynq import PL\n", "from pynq import Overlay\n", "\n", - "if not os.path.exists(PL.bitfile_name):\n", + "if PL.bitfile_name == None or not os.path.exists(PL.bitfile_name):\n", " warnings.warn('There is no overlay loaded after boot.', UserWarning)" ] }, @@ -177,7 +177,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -191,9 +191,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.10.4" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 }