forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
79 lines (64 loc) · 2.41 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppcls.modeling import architectures
from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str)
parser.add_argument("-p", "--pretrained_model", type=str)
parser.add_argument("-o", "--output_path", type=str, default="./inference")
parser.add_argument("--class_dim", type=int, default=1000)
parser.add_argument("--load_static_weights", type=str2bool, default=False)
parser.add_argument("--img_size", type=int, default=224)
return parser.parse_args()
class Net(paddle.nn.Layer):
def __init__(self, net, class_dim, model):
super(Net, self).__init__()
self.pre_net = net(class_dim=class_dim)
self.model = model
def forward(self, inputs):
x = self.pre_net(inputs)
if self.model == "GoogLeNet":
x = x[0]
x = F.softmax(x)
return x
def main():
args = parse_args()
net = architectures.__dict__[args.model]
model = Net(net, args.class_dim, args.model)
load_dygraph_pretrain(
model.pre_net,
path=args.pretrained_model,
load_static_weights=args.load_static_weights)
model.eval()
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, args.img_size, args.img_size], dtype='float32')
])
paddle.jit.save(model, os.path.join(args.output_path, "inference"))
if __name__ == "__main__":
main()