forked from wepe/MachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestSVM-SMO.py
executable file
·67 lines (52 loc) · 1.77 KB
/
testSVM-SMO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from __future__ import division, print_function
import csv, os, sys
import numpy as np
from SVCSMO import SVCSMO
filepath = os.path.dirname(os.path.abspath(__file__))
def readData(filename, header=True):
data, header = [], None
with open(filename, 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',')
if header:
header = spamreader.next()
for row in spamreader:
data.append(row)
return (np.array(data), np.array(header))
def calc_acc(y, y_hat):
idx = np.where(y_hat == 1)
TP = np.sum(y_hat[idx] == y[idx])
idx = np.where(y_hat == -1)
TN = np.sum(y_hat[idx] == y[idx])
return float(TP + TN)/len(y)
def calc_mse(y, y_hat):
return np.nanmean(((y - y_hat) ** 2))
def test_main(filename='data/iris-virginica.txt', C=1.0, kernel_type='linear', epsilon=0.001):
# Load data
(data, _) = readData('%s/%s' % (filepath, filename), header=False)
data = data.astype(float)
# Split data
X, y = data[:,0:-1], data[:,-1].astype(int)
# Initialize model
model = SVCSMO()
# Fit model
support_vectors, iterations = model.fit(X, y)
# Support vector count
sv_count = support_vectors.shape[0]
# Make prediction
y_hat = model.predict(X)
# Calculate accuracy
acc = calc_acc(y, y_hat)
mse = calc_mse(y, y_hat)
print("Support vector count: %d" % (sv_count))
print("bias:\t\t%.3f" % (model.b))
print("w:\t\t" + str(model.w))
print("accuracy:\t%.3f" % (acc))
print("mse:\t%.3f" % (mse))
print("Converged after %d iterations" % (iterations))
if __name__ == '__main__':
param = {}
param['filename'] = './small_data/iris-slwc.txt'
param['C'] = 0.1
param['kernel_type'] = 'linear'
param['epsilon'] = 0.001
test_main(**param)