-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_add_dynamo.py
209 lines (195 loc) · 7.81 KB
/
conv_add_dynamo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch._dynamo
import torch.nn.functional as F
import torch.profiler as profiler
#import intel_extension_for_pytorch as ipex
import copy
import numpy as np
import time
from timeit import Timer
torch.manual_seed(2020)
num = 200
S = [
# [1, 1, 100, 40, 16, 3, 3, 1, 1, 1, 1],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
# [1, 2048, 4, 2, 512, 1, 1, 1, 1, 0, 0],
# [1, 512, 4, 2, 512, 3, 3, 1, 1, 1, 1],
# [1, 512, 4, 2, 2048, 1, 1, 1, 1, 0, 0],
[1, 3, 224, 224, 64, 7, 7, 2, 2, 3, 3, 1],
[1, 64, 56, 56, 128, 1, 1, 1, 1, 0, 0, 1],
[1, 128, 56, 56, 128, 3, 3, 1, 1, 1, 1, 32],
[1, 128, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 64, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 56, 56, 128, 1, 1, 1, 1, 0, 0, 1],
[1, 128, 56, 56, 128, 3, 3, 1, 1, 1, 1, 32],
[1, 128, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 56, 56, 128, 1, 1, 1, 1, 0, 0, 1],
[1, 128, 56, 56, 128, 3, 3, 1, 1, 1, 1, 32],
[1, 128, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 56, 56, 256, 3, 3, 2, 2, 1, 1, 32],
[1, 256, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 56, 56, 512, 1, 1, 2, 2, 0, 0, 1],
[1, 512, 28, 28, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 28, 28, 256, 3, 3, 1, 1, 1, 1, 32],
[1, 256, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 28, 28, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 28, 28, 256, 3, 3, 1, 1, 1, 1, 32],
[1, 256, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 28, 28, 256, 1, 1, 1, 1, 0, 0, 1],
[1, 256, 28, 28, 256, 3, 3, 1, 1, 1, 1, 32],
[1, 256, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 28, 28, 512, 3, 3, 2, 2, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 28, 28, 1024, 1, 1, 2, 2, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1],
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32],
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 1024, 3, 3, 2, 2, 1, 1, 32],
[1, 1024, 7, 7, 2048, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 14, 14, 2048, 1, 1, 2, 2, 0, 0, 1],
[1, 2048, 7, 7, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 7, 7, 1024, 3, 3, 1, 1, 1, 1, 32],
[1, 1024, 7, 7, 2048, 1, 1, 1, 1, 0, 0, 1],
[1, 2048, 7, 7, 1024, 1, 1, 1, 1, 0, 0, 1],
[1, 1024, 7, 7, 1024, 3, 3, 1, 1, 1, 1, 32],
[1, 1024, 7, 7, 2048, 1, 1, 1, 1, 0, 0, 1],
]
#for x in range(len(S)):
for x in range(1):
P = S[16]
(N, C, H, W) = P[0:4]
N = 40
#N = 1
M = P[4]
(kernel_h, kernel_w) = P[5:7]
(stride_h, stride_w) = P[7:9]
(padding_h, padding_w) = P[9:11]
X_np = np.random.randn(N, C, H, W).astype(np.float32)
W_np = np.random.randn(M, C, kernel_h, kernel_w).astype(np.float32)
X = torch.from_numpy(X_np).to(memory_format=torch.channels_last)
g = P[11]
conv2d_1 = torch.nn.Conv2d(
C, M, (kernel_h, kernel_w), stride=(stride_h, stride_w),
padding=(padding_h, padding_w), groups=g, bias=True)
class ConvNet(torch.nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = conv2d_1
self.binary = torch.add
def forward(self, x, other):
y1 = self.conv1(x)
result = self.binary(y1, other)
return result
#return result.relu()
model = ConvNet().to(memory_format=torch.channels_last).eval()
other = model.conv1(X).to(memory_format=torch.channels_last)
opt_model = torch._dynamo.optimize('inductor')(model)
#opt_model = model
# warm_up
with torch.no_grad():
for i in range(1000):
y = opt_model(X, other)
#print("begin running.............")
num_iter = 1000
fwd = 0
with torch.no_grad():
t1 = time.time()
for i in range(num_iter):
y = opt_model(X, other)
t2 = time.time()
fwd = fwd + (t2 - t1)
avg_time = fwd / num_iter * 1000
print("time {}".format(avg_time))
def trace_handler(prof):
print(prof.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1))
'''
with profiler.profile(
activities=[profiler.ProfilerActivity.CPU],
schedule=torch.profiler.schedule(wait=10,warmup=50,active=10),
# son_trace_ready=torch.profiler.tensorboard_trace_handler("profiler_result")
on_trace_ready=trace_handler) as p:
with torch.no_grad():
for i in range(300):
y = traced_model(X)
p.step()
'''