-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombine_nets.py
1096 lines (891 loc) · 48 KB
/
combine_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn.functional as F
import numpy as np
import copy
from model import FcNet, cat_w_b
from matching.pfnm import layer_group_descent as pdm_multilayer_group_descent
from matching.pfnm import layer_skip_group_descent as skip_multilayer_group_descent
from matching.pfnm import layer_wise_group_descent
from matching.pfnm import block_patching, patch_weights
from matching.pfnm_communication import layer_group_descent as pdm_iterative_layer_group_descent
from matching.pfnm_communication import build_init as pdm_build_init
from itertools import product
from sklearn.metrics import confusion_matrix
from utils import *
# from KL_reg_unlimi import local_retrain
import pdb
def prepare_weight_matrix(n_classes, weights: dict):
weights_list = {}
for net_i, cls_cnts in weights.items():
cls = np.array(list(cls_cnts.keys()))
cnts = np.array(list(cls_cnts.values()))
weights_list[net_i] = np.array([0] * n_classes, dtype=np.float32)
weights_list[net_i][cls] = cnts
weights_list[net_i] = torch.from_numpy(weights_list[net_i]).view(1, -1)
return weights_list
def prepare_uniform_weights(n_classes, net_cnt, fill_val=1):
weights_list = {}
for net_i in range(net_cnt):
temp = np.array([fill_val] * n_classes, dtype=np.float32)
weights_list[net_i] = torch.from_numpy(temp).view(1, -1)
return weights_list
def prepare_sanity_weights(n_classes, net_cnt):
return prepare_uniform_weights(n_classes, net_cnt, fill_val=0)
def normalize_weights(weights):
Z = np.array([])
eps = 1e-6
weights_norm = {}
for _, weight in weights.items():
if len(Z) == 0:
Z = weight.data.numpy()
else:
Z = Z + weight.data.numpy()
for mi, weight in weights.items():
weights_norm[mi] = weight / torch.from_numpy(Z + eps)
return weights_norm
def get_weighted_average_pred(models: list, weights: dict, x, device="cpu"):
out_weighted = None
# Compute the predictions
for model_i, model in enumerate(models):
#logger.info("Model: {}".format(next(model.parameters()).device))
#logger.info("data device: {}".format(x.device))
out = F.softmax(model(x), dim=-1) # (N, C)
weight = weights[model_i].to(device)
if out_weighted is None:
weight = weight.to(device)
out_weighted = (out * weight)
else:
out_weighted += (out * weight)
return out_weighted
def compute_ensemble_accuracy(models: list, dataloader, n_classes, train_cls_counts=None, uniform_weights=False, sanity_weights=False, device="cpu"):
correct, total = 0, 0
true_labels_list, pred_labels_list = np.array([]), np.array([])
was_training = [False]*len(models)
for i, model in enumerate(models):
if model.training:
model.to(device)
was_training[i] = True
model.eval()
if uniform_weights is True:
weights_list = prepare_uniform_weights(n_classes, len(models))
elif sanity_weights is True:
weights_list = prepare_sanity_weights(n_classes, len(models))
else:
weights_list = prepare_weight_matrix(n_classes, train_cls_counts)
weights_norm = normalize_weights(weights_list)
with torch.no_grad():
for batch_idx, (x, target) in enumerate(dataloader):
#pdb.set_trace()
x, target = x.to(device), target.to(device)
target = target.long()
out = get_weighted_average_pred(models, weights_norm, x, device=device)
_, pred_label = torch.max(out, 1)
total += x.data.size()[0]
correct += (pred_label == target.data).sum().item()
if device == "cpu":
pred_labels_list = np.append(pred_labels_list, pred_label.numpy())
true_labels_list = np.append(true_labels_list, target.data.numpy())
else:
pred_labels_list = np.append(pred_labels_list, pred_label.cpu().numpy())
true_labels_list = np.append(true_labels_list, target.data.cpu().numpy())
#logger.info(correct, total)
conf_matrix = confusion_matrix(true_labels_list, pred_labels_list)
for i, model in enumerate(models):
if was_training[i]:
model.train()
return correct / float(total), conf_matrix
def prepare_fedavg_weights(batch_freqs, nets, device="cpu"):
total_num = sum(sum(batch_freqs))
#pdb.set_trace()
net_i = 0
weights = []
for freqs, net in zip(batch_freqs, nets):
layer_i = 0
#print("net_id: ", net_i, " layer_id: ", layer_i)
statedict = net.state_dict()
#print(statedict)
ratio = sum(freqs) / total_num
while True:
if ('layers.%d.weight' % layer_i) not in statedict.keys():
break
if device == "cpu":
layer_weight = statedict['layers.%d.weight' % layer_i].numpy().T
layer_bias = statedict['layers.%d.bias' % layer_i].numpy()
else:
layer_weight = statedict['layers.%d.weight' % layer_i].cpu().numpy().T
layer_bias = statedict['layers.%d.bias' % layer_i].cpu().numpy()
if net_i == 0:
weights.extend([layer_weight*ratio, layer_bias*ratio])
else:
weights[layer_i*2] += layer_weight*ratio
weights[layer_i*2+1] += layer_bias*ratio
layer_i += 1
net_i += 1
return weights
def compute_fedavg_accuracy(models: list, train_dl, test_dl, cls_freqs, n_classes, device="cpu"):
batch_freqs = pdm_prepare_freq(cls_freqs, n_classes)
avg_weights = prepare_fedavg_weights(batch_freqs, models, device=device)
dims = []
dims.append(avg_weights[0].shape[0])
for i in range(0, len(avg_weights), 2):
dims.append(avg_weights[i].shape[1])
ip_dim = dims[0]
op_dim = dims[-1]
hidden_dims = dims[1:-1]
pdm_net = FcNet(ip_dim, hidden_dims, op_dim)
statedict = pdm_net.state_dict()
# print(pdm_net)
i = 0
layer_i = 0
while i < len(avg_weights):
weight = avg_weights[i]
i += 1
bias = avg_weights[i]
i += 1
statedict['layers.%d.weight' % layer_i] = torch.from_numpy(weight.T)
statedict['layers.%d.bias' % layer_i] = torch.from_numpy(bias)
layer_i += 1
pdm_net.load_state_dict(statedict)
train_acc, conf_matrix_train = compute_ensemble_accuracy([pdm_net], train_dl, n_classes, uniform_weights=True, device=device)
test_acc, conf_matrix_test = compute_ensemble_accuracy([pdm_net], test_dl, n_classes, uniform_weights=True, device=device)
return train_acc, test_acc, conf_matrix_train, conf_matrix_test
def pdm_prepare_weights(nets, device="cpu"):
weights = []
for net_i, net in enumerate(nets):
layer_i = 0
statedict = net.state_dict()
net_weights = []
for param_id, (k, v) in enumerate(statedict.items()):
if device == "cpu":
if 'conv' in k or 'features' in k:
if 'weight' in k:
_weight_shape = v.size()
if len(_weight_shape) == 4:
net_weights.append(v.numpy().reshape(_weight_shape[0],
_weight_shape[1] * _weight_shape[2] * _weight_shape[
3]))
else:
pass
else:
net_weights.append(v.numpy())
else:
if 'weight' in k:
net_weights.append(v.cpu().numpy().T)
else:
net_weights.append(v.cpu().numpy())
else:
if 'conv' in k or 'features' in k:
if 'weight' in k:
_weight_shape = v.size()
if len(_weight_shape) == 4:
net_weights.append(v.cpu().numpy().reshape(_weight_shape[0],
_weight_shape[1] * _weight_shape[2] *
_weight_shape[3]))
else:
pass
else:
net_weights.append(v.cpu().numpy())
else:
if 'weight' in k:
net_weights.append(v.cpu().numpy().T)
else:
net_weights.append(v.cpu().numpy())
weights.append(net_weights)
return weights
def skip_prepare_weights(nets, device="cpu"):
weights = []
meta_data = []
for net_i, net in enumerate(nets):
layer_i = 0
cat_w_b(net, device=device)
statedict = net.state_dict()
net_weights = []
while True:
if ('layers.%d.weight' % layer_i) not in statedict.keys():
break
if device == "cpu":
layer_weight = statedict['layers.%d.weight' % layer_i].numpy()
else:
layer_weight = statedict['layers.%d.weight' % layer_i].cpu().numpy()
net_weights.extend([layer_weight])
layer_i += 1
weights.append(net_weights)
for w in weights[0]:
meta_data.append(w.shape)
return weights, meta_data
def pdm_prepare_freq(cls_freqs, n_classes):
freqs = []
for net_i in sorted(cls_freqs.keys()):
net_freqs = [0] * n_classes
for cls_i in cls_freqs[net_i]:
net_freqs[cls_i] = cls_freqs[net_i][cls_i]
freqs.append(np.array(net_freqs))
return freqs
from scipy.stats import multivariate_normal
def weights_prob_selfI_stats(weights, layer_type, sigma0, args):
"""
Stats the prior probability and self information of weights in each layer
"""
# get the weight_bias
n_layers = int(len(weights) / 2)
stats_layers = {}
stats_layers['probability'] = []
stats_layers['self information'] = []
for layer_index in range(1, n_layers):
self_information = []
if args.model == 'fcnet':
if layer_index == 1:
weight_bias = np.hstack((weights[0].T, weights[layer_index * 2 - 1].reshape(-1, 1),
weights[layer_index * 2]))
else:
weight_bias = np.hstack((weights[layer_index * 2 - 1].reshape(-1, 1),
weights[layer_index * 2]))
else:
if 'conv' in layer_type or 'features' in layer_type:
weight_bias = np.hstack((weights[layer_index * 2 - 2], weights[layer_index * 2 - 1].reshape(-1, 1)))
elif 'fc' in layer_type or 'classifier' in layer_type:
weight_bias = np.hstack((weights[layer_index * 2 - 2].T, weights[layer_index * 2 - 1].reshape(-1, 1)))
dim = weight_bias.shape[-1]
mask_convari_mat = np.eye(dim) * sigma0
center = np.zeros(dim)
prior_probab = multivariate_normal.pdf(weight_bias, mean=center, cov=mask_convari_mat)
self_info = - np.log(prior_probab)
stats_layers['probability'].append(prior_probab)
stats_layers['self information'].append(self_info)
return stats_layers
def compute_pdm_net_accuracy(weights, train_dl, test_dl, n_classes, device="cpu"):
# pdb.set_trace()
dims = []
dims.append(weights[0].shape[0])
for i in range(0, len(weights), 2):
dims.append(weights[i].shape[1])
ip_dim = dims[0]
op_dim = dims[-1]
hidden_dims = dims[1:-1]
pdm_net = FcNet(ip_dim, hidden_dims, op_dim)
statedict = pdm_net.state_dict()
# print(pdm_net)
i = 0
layer_i = 0
while i < len(weights):
weight = weights[i]
i += 1
bias = weights[i]
i += 1
statedict['layers.%d.weight' % layer_i] = torch.from_numpy(weight.T)
statedict['layers.%d.bias' % layer_i] = torch.from_numpy(bias)
layer_i += 1
pdm_net.load_state_dict(statedict)
train_acc, conf_matrix_train = compute_ensemble_accuracy([pdm_net], train_dl, n_classes, uniform_weights=True, device=device)
test_acc, conf_matrix_test = compute_ensemble_accuracy([pdm_net], test_dl, n_classes, uniform_weights=True, device=device)
return train_acc, test_acc, conf_matrix_train, conf_matrix_test
def compute_full_cnn_accuracy(models, weights, train_dl, test_dl, n_classes, device, args):
"""Note that we only handle the FC weights for now"""
# we need to figure out the FC dims first
# LeNetContainer
# def __init__(self, num_filters, kernel_size, input_dim, hidden_dims, output_dim=10)
# this should be safe to be hard-coded since most of the modern image classification dataset are in RGB format
# args_n_nets = len(models)
if args.model == "lenet":
num_filters = [weights[0].shape[0], weights[2].shape[0]]
kernel_size = 5
input_dim = weights[4].shape[0]
hidden_dims = [weights[4].shape[1]]
output_dim = weights[-1].shape[0]
logger.info("Num filters: {}, Input dim: {}, hidden_dims: {}, output_dim: {}".format(num_filters, input_dim,
hidden_dims, output_dim))
matched_cnn = LeNetContainer(
num_filters=num_filters,
kernel_size=kernel_size,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=output_dim)
elif args.model == "vgg":
matched_shapes = [w.shape for w in weights]
matched_cnn = matched_vgg11(matched_shapes=matched_shapes)
elif args.model == "simple-cnn":
# input_channel, num_filters, kernel_size, input_dim, hidden_dims, output_dim=10):
# [(9, 75), (9,), (19, 225), (19,), (475, 123), (123,), (123, 87), (87,), (87, 10), (10,)]
if args.dataset in ("cifar10", "cinic10"):
input_channel = 3
elif args.dataset == "mnist":
input_channel = 1
num_filters = [weights[0].shape[0], weights[2].shape[0]]
input_dim = weights[4].shape[0]
hidden_dims = [weights[4].shape[1], weights[6].shape[1]]
matched_cnn = SimpleCNNContainer(input_channel=input_channel,
num_filters=num_filters,
kernel_size=5,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
elif args.model == "moderate-cnn":
# [(35, 27), (35,), (68, 315), (68,), (132, 612), (132,), (132, 1188), (132,),
# (260, 1188), (260,), (260, 2340), (260,),
# (4160, 1025), (1025,), (1025, 515), (515,), (515, 10), (10,)]
num_filters = [weights[0].shape[0], weights[2].shape[0], weights[4].shape[0], weights[6].shape[0],
weights[8].shape[0], weights[10].shape[0]]
input_dim = weights[12].shape[0]
hidden_dims = [weights[12].shape[1], weights[14].shape[1]]
if args.dataset in ("cifar10", "cinic10"):
matched_cnn = ModerateCNNContainer(3,
num_filters,
kernel_size=3,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
elif args.dataset == "mnist":
matched_cnn = ModerateCNNContainer(1,
num_filters,
kernel_size=3,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
# logger.info("Keys of layers of convblock ...")
new_state_dict = {}
model_counter = 0
# handle the conv layers part which is not changing
for param_idx, (key_name, param) in enumerate(matched_cnn.state_dict().items()):
# print("&"*30)
# print("Key: {}, Weight Shape: {}, Matched weight shape: {}".format(key_name, param.size(), weights[param_idx].shape))
# print("&"*30)
if "conv" in key_name or "features" in key_name:
if "weight" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx].reshape(param.size()))}
elif "bias" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx])}
elif "fc" in key_name or "classifier" in key_name:
if "weight" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx].T)}
elif "bias" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx])}
new_state_dict.update(temp_dict)
matched_cnn.load_state_dict(new_state_dict)
train_acc, conf_matrix_train = compute_ensemble_accuracy([matched_cnn], train_dl, n_classes, uniform_weights=True,
device=device)
test_acc, conf_matrix_test = compute_ensemble_accuracy([matched_cnn], test_dl, n_classes, uniform_weights=True,
device=device)
return train_acc, test_acc, conf_matrix_train, conf_matrix_test
def compute_skip_net_accuracy(weights, train_dl, test_dl, n_classes, device="cpu"):
dims = []
dims.append(weights[0].shape[1]-1)
for i in range(0, len(weights)):
dims.append(weights[i].shape[0]-1)
ip_dim = dims[0]
op_dim = dims[-1]+1
hidden_dims = dims[1:-1]
skip_net = FcNet(ip_dim, hidden_dims, op_dim)
cat_w_b(skip_net)
statedict = skip_net.state_dict()
# print(pdm_net)
layer_i = 0
while layer_i < len(weights):
weight = weights[layer_i]
statedict['layers.%d.weight' % layer_i] = torch.from_numpy(weight)
layer_i += 1
skip_net.load_state_dict(statedict)
train_acc, conf_matrix_train = compute_ensemble_accuracy([skip_net], train_dl, n_classes, uniform_weights=True, device=device)
test_acc, conf_matrix_test = compute_ensemble_accuracy([skip_net], test_dl, n_classes, uniform_weights=True, device=device)
return train_acc, test_acc, conf_matrix_train, conf_matrix_test
def compute_pdm_matching_multilayer(models, train_dl, test_dl, cls_freqs, n_classes, sigma0=None, it=0, sigma=None, gamma=None,
device="cpu", KL_reg=0, unlimi=False, use_freq=False, SPAHM=False, nafi=False):
print("The iteration number of matching is ", it)
batch_weights = pdm_prepare_weights(models, device=device)
batch_freqs = pdm_prepare_freq(cls_freqs, n_classes)
res = {}
best_test_acc, best_train_acc, best_weights, best_sigma, best_gamma, best_sigma0 = -1, -1, None, -1, -1, -1
gammas = [1.0, 10.0, 50.0] if gamma is None else [gamma]
sigmas = [1.0, 0.1, 0.5] if sigma is None else [sigma]
sigma0s = [1.0, 10.0] if sigma0 is None else [sigma0]
for gamma, sigma, sigma0 in product(gammas, sigmas, sigma0s):
print("Gamma: ", gamma, "Sigma: ", sigma, "Sigma0: ", sigma0)
hungarian_weights, assignments = pdm_multilayer_group_descent(
batch_weights, sigma0_layers=sigma0, sigma_layers=sigma, batch_frequencies=batch_freqs, it=it, gamma_layers=gamma,
KL_reg=KL_reg, unlimi=unlimi, use_freq=use_freq, SPAHM=SPAHM, nafi=nafi
)
#hungarian_weights.to(device)
train_acc, test_acc, _, _ = compute_pdm_net_accuracy(hungarian_weights, train_dl, test_dl, n_classes, device=device)
res = {}
if train_acc > best_train_acc:
best_test_acc = test_acc
best_train_acc = train_acc
best_weights = hungarian_weights
best_sigma = sigma
best_gamma = gamma
best_sigma0 = sigma0
res['shapes'] = list(map(lambda x: x.shape, best_weights))
res['train_accuracy'] = best_train_acc
res['test_accuracy'] = best_test_acc
res['sigma0'] = best_sigma0
res['sigma'] = best_sigma
res['gamma'] = best_gamma
res['weights'] = best_weights
print('Best sigma0: %f, Best sigma: %f, Best Gamma: %f, Best accuracy (Test): %f. Training acc: %f' % (
best_sigma0, best_sigma, best_gamma, best_test_acc, best_train_acc))
return res
def BBP_MAP(nets_list, model_meta_data, layer_type, net_dataidx_map, traindata_cls_counts,
averaging_weights, args, n_classes, sigma0=None, it=0, sigma=None, gamma=None,
device="cpu", KL_reg=0, unlimi=False):
# starting the neural matching
models = nets_list
cls_freqs = traindata_cls_counts
assignments_list = []
batch_weights = pdm_prepare_weights(models, device=device)
raw_batch_weights = copy.deepcopy(batch_weights)
logger.info("==" * 15)
logger.info("Weights shapes: {}".format([bw.shape for bw in batch_weights[0]]))
batch_freqs = pdm_prepare_freq(cls_freqs, n_classes)
best_test_acc, best_train_acc, best_weights, best_sigma, best_gamma, best_sigma0 = -1, -1, None, -1, -1, -1
n_layers = int(len(batch_weights[0]) / 2)
num_workers = len(nets_list)
matching_shapes = []
first_fc_index = None
for layer_index in range(1, n_layers):
layer_hungarian_weights, assignment, L_next = layer_wise_group_descent(
batch_weights=batch_weights,
layer_index=layer_index,
sigma0_layers=sigma0,
sigma_layers=sigma,
batch_frequencies=batch_freqs,
it=it,
gamma_layers=gamma,
model_meta_data=model_meta_data,
model_layer_type=layer_type,
n_layers=n_layers,
matching_shapes=matching_shapes,
args=args, KL_reg=KL_reg, unlimi=unlimi
)
assignments_list.append(assignment)
# iii) load weights to the model and train the whole thing
type_of_patched_layer = layer_type[2 * (layer_index + 1) - 2]
if 'conv' in type_of_patched_layer or 'features' in type_of_patched_layer:
l_type = "conv"
elif 'fc' in type_of_patched_layer or 'classifier' in type_of_patched_layer:
l_type = "fc"
type_of_this_layer = layer_type[2 * layer_index - 2]
type_of_prev_layer = layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in type_of_this_layer or 'classifier' in type_of_this_layer) and (
'conv' in type_of_prev_layer or 'features' in type_of_this_layer))
if first_fc_identifier:
first_fc_index = layer_index
matching_shapes.append(L_next)
tempt_weights = [
([batch_weights[w][i] for i in range(2 * layer_index - 2)] + copy.deepcopy(layer_hungarian_weights)) for w
in range(num_workers)]
# i) permutate the next layer wrt matching result
for worker_index in range(num_workers):
if first_fc_index is None:
if l_type == "conv":
patched_weight = block_patching(batch_weights[worker_index][2 * (layer_index + 1) - 2],
L_next, assignment[worker_index],
layer_index + 1, model_meta_data,
matching_shapes=matching_shapes, layer_type=l_type,
dataset=args.dataset, network_name=args.model)
elif l_type == "fc":
patched_weight = block_patching(batch_weights[worker_index][2 * (layer_index + 1) - 2].T,
L_next, assignment[worker_index],
layer_index + 1, model_meta_data,
matching_shapes=matching_shapes, layer_type=l_type,
dataset=args.dataset, network_name=args.model).T
elif layer_index >= first_fc_index:
patched_weight = patch_weights(batch_weights[worker_index][2 * (layer_index + 1) - 2].T, L_next,
assignment[worker_index]).T
tempt_weights[worker_index].append(patched_weight)
# ii) prepare the whole network weights
for worker_index in range(num_workers):
for lid in range(2 * (layer_index + 1) - 1, len(batch_weights[0])):
tempt_weights[worker_index].append(batch_weights[worker_index][lid])
retrained_nets = []
for worker_index in range(num_workers):
dataidxs = net_dataidx_map[worker_index]
train_dl_local, test_dl_local = get_dataloader(args.dataset, args.datadir, args.batch_size, 32, dataidxs)
logger.info("Re-training on local worker: {}, starting from layer: {}".format(worker_index,
2 * (layer_index + 1) - 2))
retrained_cnn = local_retrain((train_dl_local, test_dl_local), tempt_weights[worker_index], args,
freezing_index=(2 * (layer_index + 1) - 2), device=device)
retrained_nets.append(retrained_cnn)
batch_weights = pdm_prepare_weights(retrained_nets, device=device)
## we handle the last layer carefully here ...
## averaging the last layer
matched_weights = []
num_layers = len(batch_weights[0])
with open('./matching_weights_cache/matched_layerwise_weights', 'wb') as weights_file:
pickle.dump(batch_weights, weights_file)
last_layer_weights_collector = []
for i in range(num_workers):
# firstly we combine last layer's weight and bias
bias_shape = batch_weights[i][-1].shape
last_layer_bias = batch_weights[i][-1].reshape((1, bias_shape[0]))
last_layer_weights = np.concatenate((batch_weights[i][-2], last_layer_bias), axis=0)
# the directed normalization doesn't work well, let's try weighted averaging
last_layer_weights_collector.append(last_layer_weights)
last_layer_weights_collector = np.array(last_layer_weights_collector)
avg_last_layer_weight = np.zeros(last_layer_weights_collector[0].shape, dtype=np.float32)
for i in range(n_classes):
avg_weight_collector = np.zeros(last_layer_weights_collector[0][:, 0].shape, dtype=np.float32)
for j in range(num_workers):
avg_weight_collector += averaging_weights[j][i] * last_layer_weights_collector[j][:, i]
avg_last_layer_weight[:, i] = avg_weight_collector
# avg_last_layer_weight = np.mean(last_layer_weights_collector, axis=0)
for i in range(num_layers):
if i < (num_layers - 2):
matched_weights.append(batch_weights[0][i])
matched_weights.append(avg_last_layer_weight[0:-1, :])
matched_weights.append(avg_last_layer_weight[-1, :])
train_dl, test_dl = get_dataloader(args.dataset, args.datadir, args.batch_size, 32)
train_acc, test_acc, _, _ = compute_full_cnn_accuracy(nets_list, matched_weights,
train_dl, test_dl, n_classes, device=device)
res = {}
res['shapes'] = list(map(lambda x: x.shape, matched_weights))
res['train_accuracy'] = train_acc
res['test_accuracy'] = test_acc
res['sigma0'] = sigma0
res['sigma'] = best_sigma
res['gamma'] = best_gamma
res['weights'] = best_weights
return res
def local_retrain(local_datasets, weights, args, mode="bottom-up", freezing_index=0, ori_assignments=None,
device="cpu"):
"""
freezing_index :: starting from which layer we update the model weights,
i.e. freezing_index = 0 means we train the whole network normally
freezing_index = len(model) means we freez the entire network
"""
if args.model == "lenet":
num_filters = [weights[0].shape[0], weights[2].shape[0]]
kernel_size = 5
input_dim = weights[4].shape[0]
hidden_dims = [weights[4].shape[1]]
output_dim = weights[-1].shape[0]
logger.info("Num filters: {}, Input dim: {}, hidden_dims: {}, output_dim: {}".format(num_filters, input_dim,
hidden_dims, output_dim))
matched_cnn = LeNetContainer(
num_filters=num_filters,
kernel_size=kernel_size,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=output_dim)
elif args.model == "vgg":
matched_shapes = [w.shape for w in weights]
matched_cnn = matched_vgg11(matched_shapes=matched_shapes)
elif args.model == "simple-cnn":
# input_channel, num_filters, kernel_size, input_dim, hidden_dims, output_dim=10):
# [(9, 75), (9,), (19, 225), (19,), (475, 123), (123,), (123, 87), (87,), (87, 10), (10,)]
if args.dataset in ("cifar10", "cinic10"):
input_channel = 3
elif args.dataset == "mnist":
input_channel = 1
num_filters = [weights[0].shape[0], weights[2].shape[0]]
input_dim = weights[4].shape[0]
hidden_dims = [weights[4].shape[1], weights[6].shape[1]]
matched_cnn = SimpleCNNContainer(input_channel=input_channel,
num_filters=num_filters,
kernel_size=5,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
elif args.model == "moderate-cnn":
# [(35, 27), (35,), (68, 315), (68,), (132, 612), (132,), (132, 1188), (132,),
# (260, 1188), (260,), (260, 2340), (260,),
# (4160, 1025), (1025,), (1025, 515), (515,), (515, 10), (10,)]
if mode not in ("block-wise", "squeezing"):
num_filters = [weights[0].shape[0], weights[2].shape[0], weights[4].shape[0], weights[6].shape[0],
weights[8].shape[0], weights[10].shape[0]]
input_dim = weights[12].shape[0]
hidden_dims = [weights[12].shape[1], weights[14].shape[1]]
input_dim = weights[12].shape[0]
elif mode == "block-wise":
# for block-wise retraining the `freezing_index` becomes a range of indices
# so at here we need to generate a unfreezing list:
__unfreezing_list = []
for fi in freezing_index:
__unfreezing_list.append(2 * fi - 2)
__unfreezing_list.append(2 * fi - 1)
# we need to do two changes here:
# i) switch the number of filters in the freezing indices block to the original size
# ii) cut the correspoidng color channels
__fixed_indices = set([i * 2 for i in range(6)]) # 0, 2, 4, 6, 8, 10
dummy_model = ModerateCNN()
num_filters = []
for pi, param in enumerate(dummy_model.parameters()):
if pi in __fixed_indices:
if pi in __unfreezing_list:
num_filters.append(param.size()[0])
else:
num_filters.append(weights[pi].shape[0])
del dummy_model
logger.info("################ Num filters for now are : {}".format(num_filters))
# note that we hard coded index of the last conv layer here to make sure the dimension is compatible
if freezing_index[0] != 6:
# if freezing_index[0] not in (6, 7):
input_dim = weights[12].shape[0]
else:
# we need to estimate the output shape here:
shape_estimator = ModerateCNNContainerConvBlocks(num_filters=num_filters)
dummy_input = torch.rand(1, 3, 32, 32)
estimated_output = shape_estimator(dummy_input)
# estimated_shape = (estimated_output[1], estimated_output[2], estimated_output[3])
input_dim = estimated_output.view(-1).size()[0]
if (freezing_index[0] <= 6) or (freezing_index[0] > 8):
hidden_dims = [weights[12].shape[1], weights[14].shape[1]]
else:
dummy_model = ModerateCNN()
for pi, param in enumerate(dummy_model.parameters()):
if pi == 2 * freezing_index[0] - 2:
_desired_shape = param.size()[0]
if freezing_index[0] == 7:
hidden_dims = [_desired_shape, weights[14].shape[1]]
elif freezing_index[0] == 8:
hidden_dims = [weights[12].shape[1], _desired_shape]
elif mode == "squeezing":
pass
if args.dataset in ("cifar10", "cinic10"):
if mode == "squeezing":
matched_cnn = ModerateCNN()
else:
matched_cnn = ModerateCNNContainer(3,
num_filters,
kernel_size=3,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
elif args.dataset == "mnist":
matched_cnn = ModerateCNNContainer(1,
num_filters,
kernel_size=3,
input_dim=input_dim,
hidden_dims=hidden_dims,
output_dim=10)
new_state_dict = {}
model_counter = 0
n_layers = int(len(weights) / 2)
# we hardcoded this for now: will probably make changes later
# if mode != "block-wise":
if mode not in ("block-wise", "squeezing"):
__non_loading_indices = []
else:
if mode == "block-wise":
if freezing_index[0] != n_layers:
__non_loading_indices = copy.deepcopy(__unfreezing_list)
__non_loading_indices.append(
__unfreezing_list[-1] + 1) # add the index of the weight connects to the next layer
else:
__non_loading_indices = copy.deepcopy(__unfreezing_list)
elif mode == "squeezing":
# please note that at here we need to reconstruct the entire local network and retrain it
__non_loading_indices = [i for i in range(len(weights))]
def __reconstruct_weights(weight, assignment, layer_ori_shape, matched_num_filters=None, weight_type="conv_weight",
slice_dim="filter"):
# what contains in the param `assignment` is the assignment for a certain layer, a certain worker
"""
para:: slice_dim: for reconstructing the conv layers, for each of the three consecutive layers, we need to slice the
filter/kernel to reconstruct the first conv layer; for the third layer in the consecutive block, we need to
slice the color channel
"""
if weight_type == "conv_weight":
if slice_dim == "filter":
res_weight = weight[assignment, :]
elif slice_dim == "channel":
_ori_matched_shape = list(copy.deepcopy(layer_ori_shape))
_ori_matched_shape[1] = matched_num_filters
trans_weight = trans_next_conv_layer_forward(weight, _ori_matched_shape)
sliced_weight = trans_weight[assignment, :]
res_weight = trans_next_conv_layer_backward(sliced_weight, layer_ori_shape)
elif weight_type == "bias":
res_weight = weight[assignment]
elif weight_type == "first_fc_weight":
# NOTE: please note that in this case, we pass the `estimated_shape` to `layer_ori_shape`:
__ori_shape = weight.shape
res_weight = weight.reshape(matched_num_filters, layer_ori_shape[2] * layer_ori_shape[3] * __ori_shape[1])[
assignment, :]
res_weight = res_weight.reshape((len(assignment) * layer_ori_shape[2] * layer_ori_shape[3], __ori_shape[1]))
elif weight_type == "fc_weight":
if slice_dim == "filter":
res_weight = weight.T[assignment, :]
# res_weight = res_weight.T
elif slice_dim == "channel":
res_weight = weight[assignment, :].T
return res_weight
# handle the conv layers part which is not changing
for param_idx, (key_name, param) in enumerate(matched_cnn.state_dict().items()):
if (param_idx in __non_loading_indices) and (freezing_index[0] != n_layers):
# we need to reconstruct the weights here s.t.
# i) shapes of the weights are euqal to the shapes of the weight in original model (before matching)
# ii) each neuron comes from the corresponding global neuron
_matched_weight = weights[param_idx]
_matched_num_filters = weights[__non_loading_indices[0]].shape[0]
#
# we now use this `_slice_dim` for both conv layers and fc layers
if __non_loading_indices.index(param_idx) != 2:
_slice_dim = "filter" # please note that for biases, it doesn't really matter if we're going to use filter or channel
else:
_slice_dim = "channel"
if "conv" in key_name or "features" in key_name:
if "weight" in key_name:
_res_weight = __reconstruct_weights(weight=_matched_weight, assignment=ori_assignments,
layer_ori_shape=param.size(),
matched_num_filters=_matched_num_filters,
weight_type="conv_weight", slice_dim=_slice_dim)
temp_dict = {key_name: torch.from_numpy(_res_weight.reshape(param.size()))}
elif "bias" in key_name:
_res_bias = __reconstruct_weights(weight=_matched_weight, assignment=ori_assignments,
layer_ori_shape=param.size(),
matched_num_filters=_matched_num_filters,
weight_type="bias", slice_dim=_slice_dim)
temp_dict = {key_name: torch.from_numpy(_res_bias)}
elif "fc" in key_name or "classifier" in key_name:
if "weight" in key_name:
if freezing_index[0] != 6:
_res_weight = __reconstruct_weights(weight=_matched_weight, assignment=ori_assignments,
layer_ori_shape=param.size(),
matched_num_filters=_matched_num_filters,
weight_type="fc_weight", slice_dim=_slice_dim)
temp_dict = {key_name: torch.from_numpy(_res_weight)}
else:
# that's for handling the first fc layer that is connected to the conv blocks
_res_weight = __reconstruct_weights(weight=_matched_weight, assignment=ori_assignments,
layer_ori_shape=estimated_output.size(),
matched_num_filters=_matched_num_filters,
weight_type="first_fc_weight", slice_dim=_slice_dim)
temp_dict = {key_name: torch.from_numpy(_res_weight.T)}
elif "bias" in key_name:
_res_bias = __reconstruct_weights(weight=_matched_weight, assignment=ori_assignments,
layer_ori_shape=param.size(),
matched_num_filters=_matched_num_filters,
weight_type="bias", slice_dim=_slice_dim)
temp_dict = {key_name: torch.from_numpy(_res_bias)}
else:
if "conv" in key_name or "features" in key_name:
if "weight" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx].reshape(param.size()))}
elif "bias" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx])}
elif "fc" in key_name or "classifier" in key_name:
if "weight" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx].T)}
elif "bias" in key_name:
temp_dict = {key_name: torch.from_numpy(weights[param_idx])}
new_state_dict.update(temp_dict)
matched_cnn.load_state_dict(new_state_dict)
for param_idx, param in enumerate(matched_cnn.parameters()):
if mode == "bottom-up":
# for this freezing mode, we freeze the layer before freezing index
if param_idx < freezing_index:
param.requires_grad = False
elif mode == "per-layer":
# for this freezing mode, we only unfreeze the freezing index
if param_idx not in (2 * freezing_index - 2, 2 * freezing_index - 1):
param.requires_grad = False
elif mode == "block-wise":
# for block-wise retraining the `freezing_index` becomes a range of indices
if param_idx not in __non_loading_indices:
param.requires_grad = False
elif mode == "squeezing":
pass
matched_cnn.to(device).train()
# start training last fc layers:
train_dl_local = local_datasets[0]
test_dl_local = local_datasets[1]
if mode != "block-wise":
if freezing_index < (len(weights) - 2):
optimizer_fine_tune = optim.SGD(filter(lambda p: p.requires_grad, matched_cnn.parameters()),
lr=args.retrain_lr, momentum=0.9)
else:
optimizer_fine_tune = optim.SGD(filter(lambda p: p.requires_grad, matched_cnn.parameters()),
lr=(args.retrain_lr / 10), momentum=0.9, weight_decay=0.0001)
else:
# optimizer_fine_tune = optim.SGD(filter(lambda p: p.requires_grad, matched_cnn.parameters()), lr=args.retrain_lr, momentum=0.9)
optimizer_fine_tune = optim.Adam(filter(lambda p: p.requires_grad, matched_cnn.parameters()), lr=0.001,
weight_decay=0.0001, amsgrad=True)
criterion_fine_tune = nn.CrossEntropyLoss().to(device)
logger.info('n_training: %d' % len(train_dl_local))
logger.info('n_test: %d' % len(test_dl_local))
train_acc = compute_accuracy(matched_cnn, train_dl_local, device=device)
test_acc, conf_matrix = compute_accuracy(matched_cnn, test_dl_local, get_confusion_matrix=True, device=device)
logger.info('>> Pre-Training Training accuracy: %f' % train_acc)
logger.info('>> Pre-Training Test accuracy: %f' % test_acc)
if mode != "block-wise":
if freezing_index < (len(weights) - 2):
retrain_epochs = args.retrain_epochs
else:
retrain_epochs = int(args.retrain_epochs * 3)
else:
retrain_epochs = args.retrain_epochs
for epoch in range(retrain_epochs):
epoch_loss_collector = []
for batch_idx, (x, target) in enumerate(train_dl_local):
x, target = x.to(device), target.to(device)
optimizer_fine_tune.zero_grad()
x.requires_grad = True
target.requires_grad = False