forked from open-mmlab/OpenUnReID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
90 lines (65 loc) · 1.29 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
DATA_ROOT: '../datasets/'
LOGS_ROOT: '../logs/'
MODEL:
# architecture
generator: 'resnet_9blocks'
discriminator: 'patchgan_3layers'
spgan: False
sync_bn: False
samples_per_bn: 64
DATA:
height: 256
width: 128
norm_mean: [0.5, 0.5, 0.5]
norm_std: [0.5, 0.5, 0.5]
TRAIN:
# augmentation
is_autoaug: False
is_flip: True
flip_prob: 0.5
is_pad: False
pad_size: 10
is_blur: False
blur_prob: 0.5
is_erase: False
erase_prob: 0.5
# dual augmentation for MMT
is_mutual_transform: False
mutual_times: 2
TRAIN:
seed: 1
deterministic: True
# mixed precision training for PyTorch>=1.6
amp: False
# datasets
datasets: {'market1501': 'trainval', 'dukemtmcreid': 'trainval'}
unsup_dataset_indexes: [1,]
epochs: 50
iters: 200
LOSS:
losses: {'gan_G': 1., 'recon': 10., 'ide': 0.5, 'gan_D': 1.}
# validate
val_freq: 1
# sampler
SAMPLER:
num_instances: 0
is_shuffle: True
# data loader
LOADER:
samples_per_gpu: 8
workers_per_gpu: 2
# optim
OPTIM:
optim: 'adam'
lr: 0.0002
adam_beta1: 0.5
weight_decay: 0
SCHEDULER:
lr_scheduler: 'linear'
n_epochs_init: 25
n_epochs_decay: 25
TEST:
# data loader
LOADER:
samples_per_gpu: 32
workers_per_gpu: 4