-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
405 lines (334 loc) · 13.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from datetime import datetime
import gradio as gr
import json, os
import requests
import numpy as np
from string import Template
import wave
# 在开头加入路径
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
# 尝试清空含有GPT_SoVITS的路径
for path in sys.path:
if path.find(r"GPT_SoVITS") != -1:
sys.path.remove(path)
# 取得模型文件夹路径
from src.config_manager import Inference_Config
from src.config_manager import __version__ as frontend_version
inference_config = Inference_Config()
default_word_count = inference_config.default_word_count
max_text_length = inference_config.max_text_length
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(locale_path="i18n/locale")
import nltk
nltk.data.path.append(os.path.abspath(os.path.join(now_dir,"nltk_data")))
language_list = ["auto", "zh", "en", "ja", "all_zh", "all_ja"]
translated_language_list = [i18n("auto"), i18n("zh"), i18n("en"), i18n("ja"), i18n("all_zh"), i18n("all_ja")] # 由于i18n库的特性,这里需要全部手输一遍
language_dict = dict(zip(translated_language_list, language_list))
cut_method_list = ["auto_cut", "cut0", "cut1", "cut2", "cut3", "cut4", "cut5"]
translated_cut_method_list = [i18n("auto_cut"), i18n("cut0"), i18n("cut1"), i18n("cut2"), i18n("cut3"), i18n("cut4"), i18n("cut5")]
cut_method_dict = dict(zip(translated_cut_method_list, cut_method_list))
def load_character_emotions(character_name, characters_and_emotions):
emotion_options = ["default"]
emotion_options = characters_and_emotions.get(character_name, ["default"])
return gr.Dropdown(emotion_options, value="default")
from Adapters.gsv_fast import GSV_Instance as TTS_instance
tts_instance = TTS_instance()
import soundfile as sf
def get_audio(
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
stream="False",
):
text_language = language_dict[text_language]
cut_method = cut_method_dict[cut_method]
if cut_method == "auto_cut":
cut_method = f"{cut_method}_{word_count}"
# Using Template to fill in variables
stream = stream.lower() in ('true', '1', 't', 'y', 'yes')
params = {
"text": text,
"text_language": text_language,
"character": cha_name,
"emotion": character_emotion,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"cut_method": cut_method,
"stream": stream,
"seed": seed,
"speed_factor": speed_factor,
"batch_size": batch_size,
}
# 如果不是经典模式,则添加额外的参数
try:
task = tts_instance.params_analyser(params)
gen = tts_instance.generate(task)
sampling_rate, audio_data = next(gen)
except Exception as e:
gr.Warning(f"Error: {e}")
return sampling_rate, np.array(audio_data,dtype=np.int16)
def stopAudioPlay():
return
global characters_and_emotions_dict
characters_and_emotions_dict = {}
def get_characters_and_emotions():
global characters_and_emotions_dict
# 直接检查字典是否为空,如果不是,直接返回,避免重复获取
if characters_and_emotions_dict == {}:
characters_and_emotions_dict = tts_instance.get_characters()
print(characters_and_emotions_dict)
return characters_and_emotions_dict
def change_character_list(
cha_name="", auto_emotion=False, character_emotion="default"
):
characters_and_emotions = {}
try:
characters_and_emotions = get_characters_and_emotions()
character_names = [i for i in characters_and_emotions]
if len(character_names) != 0:
if cha_name in character_names:
character_name_value = cha_name
else:
character_name_value = character_names[0]
else:
character_name_value = ""
emotions = characters_and_emotions.get(character_name_value, ["default"])
emotion_value = character_emotion
if auto_emotion == False and emotion_value not in emotions:
emotion_value = "default"
except:
character_names = []
character_name_value = ""
emotions = ["default"]
emotion_value = "default"
characters_and_emotions = {}
if auto_emotion:
return (
gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"), visible=False, interactive=False),
gr.Dropdown(["auto"], value="auto", label=i18n("情感列表"), interactive=False),
characters_and_emotions,
)
return (
gr.Dropdown(character_names, value=character_name_value, label=i18n("选择角色")),
gr.Checkbox(auto_emotion, label=i18n("是否自动匹配情感"),visible=False, interactive=False),
gr.Dropdown(emotions, value=emotion_value, label=i18n("情感列表"), interactive=True),
characters_and_emotions,
)
def change_endpoint(url):
url = url.strip()
return gr.Textbox(f"{url}/tts"), gr.Textbox(f"{url}/character_list")
def cut_sentence_multilang(text, max_length=30):
if max_length == -1:
return text, ""
# 初始化计数器
word_count = 0
in_word = False
for index, char in enumerate(text):
if char.isspace(): # 如果当前字符是空格
in_word = False
elif char.isascii() and not in_word: # 如果是ASCII字符(英文)并且不在单词内
word_count += 1 # 新的英文单词
in_word = True
elif not char.isascii(): # 如果字符非英文
word_count += 1 # 每个非英文字符单独计为一个字
if word_count > max_length:
return text[:index], text[index:]
return text, ""
default_text = i18n("我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。")
if "。" not in default_text:
_sentence_list = default_text.split(".")
default_text = ".".join(_sentence_list[:1]) + "."
else:
_sentence_list = default_text.split("。")
default_text = "。".join(_sentence_list[:2]) + "。"
information = ""
try:
with open("Information.md", "r", encoding="utf-8") as f:
information = f.read()
except:
pass
with gr.Blocks() as app:
gr.Markdown(information)
with gr.Row():
max_text_length_tip = "" if max_text_length == -1 else f"( "+i18n("最大允许长度")+ f" : {max_text_length} ) "
text = gr.Textbox(
value=default_text, label=i18n("输入文本")+max_text_length_tip, interactive=True, lines=8
)
text.blur(lambda x: gr.update(value=cut_sentence_multilang(x,max_length=max_text_length)[0]), [text], [text])
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("基础选项")):
with gr.Group():
text_language = gr.Dropdown(
translated_language_list,
value=translated_language_list[0],
label=i18n("文本语言"),
)
with gr.Group():
(
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions_,
) = change_character_list()
characters_and_emotions = gr.State(characters_and_emotions_)
scan_character_list = gr.Button(i18n("扫描人物列表"), variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("基础选项")):
with gr.Group():
speed_factor = gr.Slider(
minimum=0.25,
maximum=4,
value=1,
label=i18n("语速"),
step=0.05,
)
with gr.Group():
cut_method = gr.Dropdown(
translated_cut_method_list,
value=translated_cut_method_list[0],
label=i18n("切句方式"),
)
batch_size = gr.Slider(
minimum=1,
maximum=35,
value=10,
label=i18n("batch_size,1代表不并行,越大越快,但是越可能出问题"),
step=1,
)
word_count = gr.Slider(
minimum=5,maximum=500,value=default_word_count,label=i18n("每句允许最大切分字词数"),step=1,
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab(label=i18n("高级选项")):
with gr.Group():
seed = gr.Number(
-1,
label=i18n("种子"),
interactive=True,
)
with gr.Group():
top_k = gr.Slider(minimum=1, maximum=30, value=3, label=i18n("Top K"), step=1)
top_p = gr.Slider(minimum=0, maximum=1, value=0.8, label=i18n("Top P"))
temperature = gr.Slider(
minimum=0, maximum=1, value=0.8, label=i18n("Temperature")
)
cut_method.input(lambda x: gr.update(visible=(cut_method_dict[x]=="auto_cut")), [cut_method], [word_count])
with gr.Tabs():
with gr.Tab(label=i18n("请求完整音频")):
with gr.Row():
sendRequest = gr.Button(i18n("发送请求"), variant="primary")
audioRecieve = gr.Audio(
None, label=i18n("音频输出"), type="filepath", streaming=False
)
with gr.Tab(label=i18n("流式音频"),interactive=False,visible=False):
with gr.Row():
sendStreamRequest = gr.Button(
i18n("发送并开始播放"), variant="primary", interactive=True
)
stopStreamButton = gr.Button(i18n("停止播放"), variant="secondary")
with gr.Row():
audioStreamRecieve = gr.Audio(None, label=i18n("音频输出"), interactive=False)
gr.HTML("<hr style='border-top: 1px solid #ccc; margin: 20px 0;' />")
gr.HTML(
f"""<p>{i18n("这是一个由")} <a href="{i18n("https://space.bilibili.com/66633770")}">XTer</a> {i18n("提供的推理特化包,当前版本:")}<a href="https://www.yuque.com/xter/zibxlp/awo29n8m6e6soru9">{frontend_version}</a> {i18n("项目开源地址:")} <a href="https://github.com/X-T-E-R/TTS-for-GPT-soVITS">Github</a></p>
<p>{i18n("吞字漏字属于正常现象,太严重可尝试换行、加句号或调节batch size滑条。")}</p>
<p>{i18n("若有疑问或需要进一步了解,可参考文档:")}<a href="{i18n("https://www.yuque.com/xter/zibxlp")}">{i18n("点击查看详细文档")}</a>。</p>"""
)
# 以下是事件绑定
app.load(
change_character_list,
inputs=[cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
]
)
sendRequest.click(lambda: gr.update(interactive=False), None, [sendRequest]).then(
get_audio,
inputs=[
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
gr.State("False"),
],
outputs=[audioRecieve],
).then(lambda: gr.update(interactive=True), None, [sendRequest])
sendStreamRequest.click(
lambda: gr.update(interactive=False), None, [sendStreamRequest]
).then(
get_audio,
inputs=[
text,
cha_name,
text_language,
batch_size,
speed_factor,
top_k,
top_p,
temperature,
character_emotion,
cut_method,
word_count,
seed,
gr.State("True"),
],
outputs=[audioStreamRecieve],
).then(
lambda: gr.update(interactive=True), None, [sendStreamRequest]
)
stopStreamButton.click(stopAudioPlay, inputs=[])
cha_name.change(
load_character_emotions,
inputs=[cha_name, characters_and_emotions],
outputs=[character_emotion],
)
scan_character_list.click(
change_character_list,
inputs=[cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
],
)
auto_emotion_checkbox.input(
change_character_list,
inputs=[cha_name, auto_emotion_checkbox, character_emotion],
outputs=[
cha_name,
auto_emotion_checkbox,
character_emotion,
characters_and_emotions,
],
)
is_share = inference_config.is_share
app.queue().launch(show_error=True, share=is_share, inbrowser=True)