Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

map is lower than 38.3 #605

Open
yuedongli1 opened this issue Oct 31, 2024 · 2 comments
Open

map is lower than 38.3 #605

yuedongli1 opened this issue Oct 31, 2024 · 2 comments

Comments

@yuedongli1
Copy link

I trained yolov9-t with coco, my command is this:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-t.yaml --weights '' --name yolov9-t --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
but the map of the best.pt is 37.4

@yuedongli1
Copy link
Author

val command is:
python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './runs/train/yolov9-t5/weights/best.pt' --save-json --name yolov9_t_640_val

@LarryXing0
Copy link

LarryXing0 commented Dec 11, 2024

I trained yolov9-t with coco, my command is this: python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-t.yaml --weights '' --name yolov9-t --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 but the map of the best.pt is 37.4

after training. metric is flowing,do you solve the probelm

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.291
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.421
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.311
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.148
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.314
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.282
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.468
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.556
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.681
@yuedongli1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants