-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheck_figure2.m
62 lines (55 loc) · 2.58 KB
/
check_figure2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
%% Recreate Figure 2 from paper
%
% This script loads in the processed data from this paper:
%
% Winawer J, Witthoft N, Frank MC, Wu L, Wade AR, Boroditsky L. Russian
% blues reveal effects of language on color discrimination. Proc Natl Acad
% Sci U S A. 2007 May 8;104(19):7780-5. doi: 10.1073/pnas.0701644104. Epub
% 2007 Apr 30. PMID: 17470790; PMCID: PMC1876524.
%
% and then does simple computations (means and standard errors) to
% regenerate the summary data plotted in Figure 2 of the manuscript.
%
% See script "load_blues_data.m" for the generation of the processed data
% from the raw data.
stats = readtable('russian_blues_summary.csv');
mn = NaN(4,3); col = 0; row = 0;
varnames = cell(1,4);
for language = {'russian' 'english'}
for distance = {'near' 'far'}
row = row+1; col = 0;
for interference = {'no_interference' 'spatial_interference' 'verbal_interference'}
col = col+1;
varnames{row} = sprintf('%s %s', language{1}, distance{1});
idx_b = strcmp(stats.language, language) & ...
strcmp(stats.condition, interference) & ...
strcmp(stats.distance, distance) & ...
strcmp(stats.category, 'between');
idx_w = strcmp(stats.language, language) & ...
strcmp(stats.condition, interference) & ...
strcmp(stats.distance, distance) & ...
strcmp(stats.category, 'within');
mn(row,col) = mean(stats.mean_response_time(idx_w)-stats.mean_response_time(idx_b));
% mn_diff = mean(stats.mean_response_time(idx_w) - stats.mean_response_time(idx_b));
end
end
end
figure(2),clf
cats = categorical(varnames);
cats = reordercats(cats, varnames);
b = bar(cats, mn);
b(1).FaceColor = [1 1 1];
b(2).FaceColor = .8*[1 1 1];
b(3).FaceColor = .4*[1 1 1];
legend('no interference', 'spatial interference', 'verbal Interference');
ylim([-100 200])
set(gca, 'YTick', -100:50:200, 'FontSize', 16)
set(gcf, 'Color', 'w', 'Position', [700 500 500 500])
% Note: To make the error bars, we need to compute "one SE of the estimate
% of the three-way interaction among category, interference condition, and
% color distance."
% Note that in the original paper, for both Table 1 and figure 2, there
% appears to have been an erroneous switch such that the Russian-speakers'
% far data got swapped with the English-speakers' near data. This doesn't
% appear to have affected the statistics but only the visualization. And
% even for visualization, it appears to be a minor effect.