Skip to content

Latest commit

 

History

History
111 lines (87 loc) · 6.81 KB

README.md

File metadata and controls

111 lines (87 loc) · 6.81 KB

exllama

CONTAINERS IMAGES RUN BUILD

This package provides containers for both ExLlama and ExLlamaV2:

Both loaders are also supported in the oobabooga text-generation-webui container.

Inference Benchmark

Substitute the GPTQ model from HuggingFace Hub that you want to run (see exllama compatible models)

./run.sh --workdir=/opt/exllama $(./autotag exllama) /bin/bash -c \
  'python3 test_benchmark_inference.py --perf --validate -d $(huggingface-downloader TheBloke/Llama-2-7B-GPTQ)'

If the model repository is private or requires authentication, add --env HUGGINGFACE_TOKEN=<YOUR-ACCESS-TOKEN>

Memory Usage

Model Memory (MB)
TheBloke/Llama-2-7B-GPTQ 5,200
TheBloke/Llama-2-13B-GPTQ 9,135
TheBloke/LLaMA-30b-GPTQ 20,206
TheBloke/Llama-2-70B-GPTQ 35,462
CONTAINERS
exllama:0.0.15
   Aliases exllama
   Requires L4T ['>=36']
   Dependencies build-essential cuda cudnn python numpy cmake onnx pytorch huggingface_hub
   Dependants text-generation-webui:1.7 text-generation-webui:6a7cd01 text-generation-webui:main
   Dockerfile Dockerfile
exllama:0.0.14
   Aliases exllama
   Requires L4T ['==35.*']
   Dependencies build-essential cuda cudnn python numpy cmake onnx pytorch huggingface_hub
   Dockerfile Dockerfile
CONTAINER IMAGES
Repository/Tag Date Arch Size
  dustynv/exllama:r35.2.1 2023-12-15 arm64 5.5GB
  dustynv/exllama:r35.3.1 2023-12-11 arm64 5.5GB
  dustynv/exllama:r35.4.1 2023-12-14 arm64 5.4GB
  dustynv/exllama:v1-r36.2.0 2023-12-15 arm64 7.2GB
  dustynv/exllama:v2-r35.2.1 2023-12-15 arm64 5.5GB
  dustynv/exllama:v2-r35.3.1 2023-12-14 arm64 5.5GB
  dustynv/exllama:v2-r35.4.1 2023-12-12 arm64 5.5GB
  dustynv/exllama:v2-r36.2.0 2023-12-15 arm64 7.2GB

Container images are compatible with other minor versions of JetPack/L4T:
    • L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
    • L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)

RUN CONTAINER

To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:

# automatically pull or build a compatible container image
jetson-containers run $(autotag exllama)

# or explicitly specify one of the container images above
jetson-containers run dustynv/exllama:v1-r36.2.0

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/exllama:v1-r36.2.0

jetson-containers run forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

jetson-containers run -v /path/on/host:/path/in/container $(autotag exllama)

To launch the container running a command, as opposed to an interactive shell:

jetson-containers run $(autotag exllama) my_app --abc xyz

You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

jetson-containers build exllama

The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.