-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_retriever.py
482 lines (452 loc) · 21.5 KB
/
run_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import torch
from retriever import DualEncoder
import argparse
import numpy as np
import os
import random
import torch.nn as nn
from transformers import BertTokenizer, BertModel, AdamW, \
get_linear_schedule_with_warmup, get_constant_schedule
from datetime import datetime
import json
from collections import OrderedDict
from utils import Logger, strtime
from sklearn.metrics import label_ranking_average_precision_score
from data_retriever import load_data, get_loaders, \
get_embeddings, get_hard_negative, save_candidates, get_labels, \
get_entity_map, get_loader_from_candidates
def set_seeds(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def load_model(is_init, config_path, model_path, device, type_loss,
blink=True):
with open(config_path) as json_file:
params = json.load(json_file)
if blink:
ctxt_bert = BertModel.from_pretrained(params["bert_model"])
cand_bert = BertModel.from_pretrained(params["bert_model"])
else:
ctxt_bert = BertModel.from_pretrained('bert-large-uncased')
cand_bert = BertModel.from_pretrained('bert-large-uncased')
state_dict = torch.load(model_path) if device.type == 'cuda' else \
torch.load(model_path, map_location=torch.device('cpu'))
if is_init:
if blink:
ctxt_dict = OrderedDict()
cand_dict = OrderedDict()
for k, v in state_dict.items():
if k[:26] == 'context_encoder.bert_model':
new_k = k[27:]
ctxt_dict[new_k] = v
if k[:23] == 'cand_encoder.bert_model':
new_k = k[24:]
cand_dict[new_k] = v
ctxt_bert.load_state_dict(ctxt_dict, strict=False)
cand_bert.load_state_dict(cand_dict, strict=False)
model = DualEncoder(ctxt_bert, cand_bert, type_loss)
else:
model = DualEncoder(ctxt_bert, cand_bert, type_loss)
model.load_state_dict(state_dict['sd'])
return model
def configure_optimizer(args, model, num_train_examples):
# https://github.com/google-research/bert/blob/master/optimization.py#L25
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr,
eps=args.adam_epsilon)
num_train_steps = int(num_train_examples / args.B /
args.gradient_accumulation_steps * args.epochs)
num_warmup_steps = int(num_train_steps * args.warmup_proportion)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps,
num_training_steps=num_train_steps)
return optimizer, scheduler, num_train_steps, num_warmup_steps
def configure_optimizer_simple(args, model, num_train_examples):
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
num_train_steps = int(num_train_examples / args.B /
args.gradient_accumulation_steps * args.epochs)
num_warmup_steps = 0
scheduler = get_constant_schedule(optimizer)
return optimizer, scheduler, num_train_steps, num_warmup_steps
def evaluate(scores_k, top_k,
labels):
# return modified hard recall@k, lrap and recall@K
# hard recall: predict successfully if all labels are predicted
# recall: micro over passages
nb_samples = len(labels)
r_k = 0
y_trues = []
num_ents = 0
num_hits = 0
preds = []
assert len(labels) == top_k.shape[0]
for i in range(len(labels)):
label = labels[i]
pred = top_k[i]
preds.append(pred)
r_k += set(label).issubset(set(pred))
y_trues.append(np.in1d(pred, label))
num_ents += len(set(label))
num_hits += len(set(label).intersection(set(pred)))
r_k /= nb_samples
h_k = num_hits / num_ents
y_trues = np.vstack(y_trues)
lrap = label_ranking_average_precision_score(y_trues, scores_k)
return r_k, lrap, h_k
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main(args):
start_time = datetime.now()
set_seeds(args)
# configure logger
best_val_perf = float('-inf')
logger = Logger(args.model + '.log', on=True)
logger.log(str(args))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
logger.log(f'Using device: {str(device)}', force=True)
# load data and initialize model and dataset
samples_train, samples_val, samples_test, entities = \
load_data(args.data_dir, args.kb_dir)
logger.log('number of entities {:d}'.format(len(entities)))
# get model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
max_num_positives = args.k - args.num_cands
config = {
"top_k": 100,
"biencoder_model": args.pretrained_path + "biencoder_wiki_large.bin",
"biencoder_config": args.pretrained_path + "biencoder_wiki_large.json"
}
model = load_model(True, config['biencoder_config'],
config['biencoder_model'], device, args.type_loss,
args.blink)
# configure optimizer
num_train_samples = len(samples_train)
if args.simpleoptim:
optimizer, scheduler, num_train_steps, num_warmup_steps \
= configure_optimizer_simple(args, model, num_train_samples)
else:
optimizer, scheduler, num_train_steps, num_warmup_steps \
= configure_optimizer(args, model, num_train_samples)
if args.resume_training:
cpt = torch.load(args.model) if device.type == 'cuda' \
else torch.load(args.model, map_location=torch.device('cpu'))
model.load_state_dict(cpt['sd'])
optimizer.load_state_dict(cpt['opt_sd'])
scheduler.load_state_dict(cpt['scheduler_sd'])
best_val_perf = cpt['perf']
model.to(device)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.fp16_opt_level)
args.n_gpu = torch.cuda.device_count()
dp = args.n_gpu > 1
if dp:
logger.log('Data parallel across {:d} GPUs {:s}'
''.format(len(args.gpus.split(',')), args.gpus))
model = nn.DataParallel(model)
train_men_loader, val_men_loader, test_men_loader, entity_loader = \
get_loaders(samples_train, samples_val, samples_test, entities,
args.max_len, tokenizer, args.mention_bsz,
args.entity_bsz, args.add_topic, args.use_title)
entity_map = get_entity_map(entities)
train_labels = get_labels(samples_train, entity_map)
val_labels = get_labels(samples_val, entity_map)
test_labels = get_labels(samples_test, entity_map)
model.train()
effective_bsz = args.B * args.gradient_accumulation_steps
# train
logger.log('***** train *****')
logger.log('# train samples: {:d}'.format(num_train_samples))
logger.log('# val samples: {:d}'.format(len(samples_val)))
logger.log('# test samples: {:d}'.format(len(samples_test)))
logger.log('# epochs: {:d}'.format(args.epochs))
logger.log(' batch size : {:d}'.format(args.B))
logger.log(' gradient accumulation steps {:d}'
''.format(args.gradient_accumulation_steps))
logger.log(
' effective training batch size with accumulation: {:d}'
''.format(effective_bsz))
logger.log(' # training steps: {:d}'.format(num_train_steps))
logger.log(' # warmup steps: {:d}'.format(num_warmup_steps))
logger.log(' learning rate: {:g}'.format(args.lr))
logger.log(' # parameters: {:d}'.format(count_parameters(model)))
step_num = 0
tr_loss, logging_loss = 0.0, 0.0
start_epoch = 1
if args.resume_training:
step_num = cpt['step_num']
tr_loss, logging_loss = cpt['tr_loss'], cpt['logging_loss']
start_epoch = cpt['epoch'] + 1
model.zero_grad()
all_cands_embeds = None
logger.log('get candidates embeddings')
if args.resume_training or args.epochs == 0:
# we store candidates embeddings after each epoch
all_cands_embeds = np.load(args.cands_embeds_path)
elif args.rands_ratio != 1.0 and args.epochs != 0:
all_cands_embeds = get_embeddings(entity_loader, model, False, device)
for epoch in range(start_epoch, args.epochs + 1):
logger.log('\nEpoch {:d}'.format(epoch))
epoch_start_time = datetime.now()
if args.rands_ratio == 1.0:
logger.log('no need to mine hard negatives')
candidates = None
else:
mention_embeds = get_embeddings(train_men_loader, model, True,
device)
logger.log('mining hard negatives')
mining_start_time = datetime.now()
candidates = get_hard_negative(mention_embeds, all_cands_embeds,
args.num_cands,
max_num_positives,
args.use_gpu_index)[0]
mining_time = strtime(mining_start_time)
logger.log('mining time for epoch {:3d} '
'are {:s}'.format(epoch, mining_time))
train_loader = get_loader_from_candidates(samples_train, entities,
train_labels, args.max_len,
tokenizer, candidates,
args.num_cands,
args.rands_ratio,
args.type_loss,
args.add_topic,
args.use_title, True, args.B)
epoch_train_start_time = datetime.now()
for step, batch in enumerate(train_loader):
model.train()
bsz = batch[0].size(0)
batch = tuple(t.to(device) for t in batch)
loss = model(*batch)[0]
if dp:
loss = loss.sum() / bsz
else:
loss /= bsz
loss_avg = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss_avg, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss_avg.backward()
tr_loss += loss_avg.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
args.clip)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(),
args.clip)
optimizer.step()
scheduler.step()
model.zero_grad()
step_num += 1
if step_num % args.logging_steps == 0:
avg_loss = (tr_loss - logging_loss) / args.logging_steps
logger.log('Step {:10d}/{:d} | Epoch {:3d} | '
'Batch {:5d}/{:5d} | '
'Average Loss {:8.4f}'
''.format(step_num, num_train_steps,
epoch, step + 1,
len(train_loader), avg_loss))
logging_loss = tr_loss
logger.log('training time for epoch {:3d} '
'is {:s}'.format(epoch, strtime(epoch_train_start_time)))
all_cands_embeds = get_embeddings(entity_loader, model, False, device)
all_mention_embeds = get_embeddings(val_men_loader, model, True, device)
top_k, scores_k = get_hard_negative(all_mention_embeds,
all_cands_embeds, args.k,
0, args.use_gpu_index)
eval_result = evaluate(scores_k, top_k, val_labels)
logger.log('Done with epoch {:3d} | train loss {:8.4f} | '
'validation hard recall {:8.4f}'
'|validation LRAP {:8.4f} | validation recall {:8.4f}|'
' epoch time {} '.format(
epoch,
tr_loss / step_num,
eval_result[0],
eval_result[1],
eval_result[2],
strtime(epoch_start_time)
))
save_model = (eval_result[2] >= best_val_perf)
if save_model:
current_best = eval_result[2]
logger.log('------- new best val perf: {:g} --> {:g} '
''.format(best_val_perf, current_best))
best_val_perf = current_best
torch.save({'opt': args,
'sd': model.module.state_dict() if dp else model.state_dict(),
'perf': best_val_perf, 'epoch': epoch,
'opt_sd': optimizer.state_dict(),
'scheduler_sd': scheduler.state_dict(),
'tr_loss': tr_loss, 'step_num': step_num,
'logging_loss': logging_loss},
args.model)
np.save(args.cands_embeds_path, all_cands_embeds)
else:
logger.log('')
model = load_model(False, config['biencoder_config'],
args.model, device,
args.type_loss,
args.blink)
model.to(device)
if dp:
logger.log('Data parallel across {:d} GPUs {:s}'
''.format(len(args.gpus.split(',')), args.gpus))
model = nn.DataParallel(model)
model.eval()
all_cands_embeds = np.load(args.cands_embeds_path)
logger.log('getting test mention embeddings ...')
test_mention_embeds = get_embeddings(test_men_loader, model, True, device)
start_time_test_infer = datetime.now()
top_k_test, scores_k_test = get_hard_negative(test_mention_embeds,
all_cands_embeds,
args.k, 0, args.use_gpu_index)
logger.log('test inference time {:s}'
''.format(strtime(start_time_test_infer)))
test_result = evaluate(scores_k_test,
top_k_test, test_labels)
logger.log(' test hard recall@{:d} : {:8.4f}'
'| test LRAP : {:8.4f}| '
'test recall : {:8.4f}| '
''.format(args.k,
test_result[0],
test_result[1],
test_result[2]))
logger.log('saving test pairs')
save_candidates(samples_test, top_k_test, entity_map, test_labels,
args.out_dir, 'test')
val_mention_embeds = get_embeddings(val_men_loader, model, True, device)
start_time_val_infer = datetime.now()
top_k_val, scores_k_val = get_hard_negative(val_mention_embeds,
all_cands_embeds, args.k, 0,
args.use_gpu_index)
logger.log('val inference time {:s} |'
'val infer time per instance {:s}'
''.format(strtime(start_time_val_infer),
str((datetime.now() - start_time_val_infer) / len(
samples_val))))
val_result = evaluate(scores_k_val,
top_k_val, val_labels)
logger.log(' val hard recall@{:d} : {:8.4f}'
'| val LRAP : {:8.4f}| '
'val recall : {:8.4f}| '
''.format(args.k,
val_result[0],
val_result[1],
val_result[2]))
logger.log('saving val pairs')
save_candidates(samples_val, top_k_val, entity_map, val_labels,
args.out_dir, 'val')
train_mention_embeds = get_embeddings(train_men_loader, model, True,
device)
top_k_train, scores_k_train = get_hard_negative(train_mention_embeds,
all_cands_embeds, args.k,
0, args.use_gpu_index)
logger.log('saving train pairs')
save_candidates(samples_train, top_k_train, entity_map,
train_labels,
args.out_dir,
'train')
logger.log('experiments time {:s}'.format(strtime(start_time)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str,
help='model path')
parser.add_argument('--pretrained_path', type=str,
help='the directory of the wikipedia pretrained models')
parser.add_argument('--resume_training', action='store_true',
help='resume training from checkpoint?')
parser.add_argument('--type_loss', type=str,
choices=['log_sum', 'sum_log', 'sum_log_nce',
'max_min'],
help='type of multi-label loss ?')
parser.add_argument('--use_title', action='store_true',
help='use title or topic?')
parser.add_argument('--add_topic', action='store_true',
help='add topic information?')
parser.add_argument('--blink', action='store_true',
help='use BLINK pretrained model?')
parser.add_argument('--max_len', type=int, default=100,
help='max length of the mention input ')
parser.add_argument('--data_dir', type=str,
help='the data directory')
parser.add_argument('--kb_dir', type=str,
help='the knowledge base directory')
parser.add_argument('--out_dir', type=str,
help='the output saving directory')
parser.add_argument('--B', type=int, default=16,
help='the batch size per gpu')
parser.add_argument('--lr', type=float, default=2e-5,
help='the learning rate')
parser.add_argument('--epochs', type=int, default=3,
help='the number of training epochs')
parser.add_argument('--k', type=int, default=100,
help='recall@k when evaluate')
parser.add_argument('--warmup_proportion', type=float, default=0.1,
help='proportion of training steps to perform linear '
'learning rate warmup for [%(default)g]')
parser.add_argument('--weight_decay', type=float, default=0.01,
help='weight decay [%(default)g]')
parser.add_argument('--adam_epsilon', type=float, default=1e-6,
help='epsilon for Adam optimizer [%(default)g]')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help='num gradient accumulation steps [%(default)d]')
parser.add_argument('--seed', type=int, default=42,
help='random seed [%(default)d]')
parser.add_argument('--num_workers', type=int, default=0,
help='num workers [%(default)d]')
parser.add_argument('--simpleoptim', action='store_true',
help='simple optimizer (constant schedule, '
'no weight decay?')
parser.add_argument('--clip', type=float, default=1,
help='gradient clipping [%(default)g]')
parser.add_argument('--logging_steps', type=int, default=1000,
help='num logging steps [%(default)d]')
parser.add_argument('--gpus', default='', type=str,
help='GPUs separated by comma [%(default)s]')
parser.add_argument('--rands_ratio', default=1.0, type=float,
help='the ratio of random candidates and hard')
parser.add_argument('--num_cands', default=64, type=int,
help='the total number of candidates')
parser.add_argument('--mention_bsz', type=int, default=512,
help='the batch size')
parser.add_argument('--entity_bsz', type=int, default=512,
help='the batch size')
parser.add_argument('--use_gpu_index', action='store_true',
help='use gpu index?')
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) "
"instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', "
"'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument('--cands_embeds_path', type=str,
help='the directory of candidates embeddings')
parser.add_argument('--use_cached_embeds', action='store_true',
help='use cached candidates embeddings ?')
args = parser.parse_args()
# Set environment variables before all else.
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus # Sets torch.cuda behavior
main(args)