-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata_reader.py
214 lines (193 loc) · 8.66 KB
/
data_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import json
from torch.utils.data import Dataset
import os
import numpy as np
from utils import OrderedSet
from data_retriever import make_single_loader
class ReaderData(Dataset):
# get the input data item for the reader model
def __init__(self,
tokenizer,
samples,
entities,
max_len,
max_num_candidates,
is_training,
add_topic=False,
use_title=False):
self.tokenizer = tokenizer
self.is_training = is_training
self.samples = samples
self.entities = entities
self.all_entity_token_ids = np.array([e['text_ids'] for e in entities])
self.all_entity_masks = np.array([e['text_masks'] for e in entities])
self.max_len = max_len
self.max_num_candidates = max_num_candidates
self.add_topic = add_topic
self.use_title = use_title
self.TT = [2]
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
sample = self.samples[index]
title = None
if self.add_topic:
title = sample['title'] if self.use_title else sample['topic']
mention_ids = sample['mention_ids']
passage_labels = sample['passage_labels'][:self.max_num_candidates]
if self.add_topic:
title_ids = self.TT + title
else:
title_ids = []
if self.is_training:
positives = sample['positives']
pos_spans = sample['pos_spans']
assert len(positives) == len(pos_spans)
# ensure always have positive labels for training
if len(positives) == 0:
positives = sample['gold_ids']
pos_spans = sample['gold_spans']
passage_labels = ([1] * len(positives) + passage_labels)[
:self.max_num_candidates]
negatives = list(np.random.permutation(sample['negatives']))
candidates = (positives + negatives)[:self.max_num_candidates]
spans = (pos_spans + sample['neg_spans'])[
:self.max_num_candidates]
else:
candidates = sample['candidates'][:self.max_num_candidates]
spans = sample['candidate_spans'][:self.max_num_candidates]
candidates_ids = self.all_entity_token_ids[candidates]
candidates_masks = self.all_entity_masks[candidates]
encoded_pairs = torch.zeros((self.max_num_candidates,
self.max_len)).long()
type_marks = torch.zeros((self.max_num_candidates, self.max_len)).long()
attention_masks = torch.zeros((self.max_num_candidates,
self.max_len)).long()
answer_masks = torch.zeros((self.max_num_candidates,
self.max_len)).long()
passage_labels = torch.tensor(passage_labels).long()
if self.is_training:
start_labels = torch.zeros((self.max_num_candidates,
self.max_len)).long()
end_labels = torch.zeros((self.max_num_candidates,
self.max_len)).long()
for i, candidate_ids in enumerate(candidates_ids):
if self.is_training:
_spans = np.array(spans[i])
start_labels[i, _spans[:, 0]] = 1
end_labels[i, _spans[:, 1]] = 1
candidate_ids = candidate_ids.tolist()
candidate_masks = candidates_masks[i].tolist()
# CLS mention ids TT title ids SEP candidate ids SEP
input_ids = mention_ids[:-1] + title_ids + [
self.tokenizer.sep_token_id] + candidate_ids[1:]
input_ids = (input_ids + [self.tokenizer.pad_token_id] * (
self.max_len - len(input_ids)))[:self.max_len]
attention_mask = [1] * (len(mention_ids + title_ids)) + \
candidate_masks[1:]
attention_mask = (attention_mask + [0] * (self.max_len - len(
attention_mask)))[:self.max_len]
token_type_ids = [0] * len(mention_ids + title_ids) + \
candidate_masks[1:]
token_type_ids = (token_type_ids + [0] * (self.max_len - len(
token_type_ids)))[:self.max_len]
encoded_pairs[i] = torch.tensor(input_ids)
attention_masks[i] = torch.tensor(attention_mask)
type_marks[i] = torch.tensor(token_type_ids)
answer_masks[i, :len(mention_ids)] = 1
if self.is_training:
return encoded_pairs, attention_masks, type_marks, answer_masks, \
passage_labels, start_labels, end_labels
else:
return encoded_pairs, attention_masks, type_marks, answer_masks, \
passage_labels
def load_data(data_dir, kb_dir):
def read_data(part):
name = '%s.json' % part
items = []
with open(os.path.join(data_dir, name)) as f:
for line in f:
item = json.loads(line)
items.append(item)
return items
samples_train = read_data('train')
samples_dev = read_data('val')
samples_test = read_data('test')
def load_entities():
entities = []
with open(os.path.join(kb_dir, 'entities_kilt.json')) as f:
for line in f:
entities.append(json.loads(line))
return entities
entities = load_entities()
return samples_train, samples_dev, samples_test, entities
# get document level gold results
def get_golds(samples_train, samples_dev, samples_test):
def get_passage_gold(samples):
p_golds = []
for sample in samples:
assert len(sample['labels']) == len(sample['label_spans'])
# start,end,entity
g = [span + [entity] for span, entity in zip(sample['label_spans'],
sample['labels'])]
p_golds.append(g)
return p_golds
p_golds_train = get_passage_gold(samples_train)
p_golds_val = get_passage_gold(samples_dev)
p_golds_test = get_passage_gold(samples_test)
golds_train_doc = get_results_doc(p_golds_train, samples_train)
golds_val_doc = get_results_doc(p_golds_val, samples_dev)
golds_test_doc = get_results_doc(p_golds_test, samples_test)
return golds_train_doc, golds_val_doc, golds_test_doc, p_golds_train, \
p_golds_val, p_golds_test
def get_loaders(tokenizer, data, max_len,
max_num_candidates,
max_num_candidates_val,
train_bsz, val_bsz,
add_topic, use_title):
samples_train, samples_dev, samples_test, entities = data
train_set = ReaderData(tokenizer, samples_train, entities, max_len,
max_num_candidates, True,
add_topic, use_title)
dev_set = ReaderData(tokenizer, samples_dev, entities, max_len,
max_num_candidates_val, False, add_topic,
use_title)
test_set = ReaderData(tokenizer, samples_test, entities, max_len,
max_num_candidates_val, False, add_topic,
use_title)
loader_train = make_single_loader(train_set, train_bsz, True)
loader_dev = make_single_loader(dev_set, val_bsz, False)
loader_test = make_single_loader(test_set, val_bsz, False)
return loader_train, loader_dev, loader_test
def get_results_doc(passage_results, samples):
# get document level results from passage-level results
assert len(passage_results) == len(samples)
results = []
# p: start, end, entity_name
for p, sample in zip(passage_results, samples):
offset = sample['offset']
if len(p) == 0:
continue
for r in p:
result = (sample['doc_id'], r[0] + offset, r[1] + offset, r[2])
results.append(result)
# result: doc_id, start_doc,end_doc,entity_name
results = list(OrderedSet(results))
return results
# save passage level results
def save_results(predicts, p_golds, samples, results_dir, part):
assert len(predicts) == len(p_golds)
assert len(samples) == len(predicts)
save_path = os.path.join(results_dir, 'reader_%s_results.json' % part)
results = []
for p_gold, predict, sample in zip(p_golds, predicts, samples):
result = {}
result['doc_id'] = sample['doc_id']
result['text'] = sample['mention_ids']
result['predicts'] = predict
result['golds'] = p_gold
results.append(result)
with open(save_path, 'w') as f:
for r in results:
f.write('%s\n' % json.dumps(r))