-
Notifications
You must be signed in to change notification settings - Fork 0
/
colon_cancer.py
313 lines (255 loc) · 11.6 KB
/
colon_cancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# %% [markdown]
# ## Utils
# %%
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# %%
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from scipy.io import loadmat
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, average_precision_score, precision_recall_fscore_support
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from models.networks_colon import cmil
import torch.nn as nn
import numpy as np
import glob
def generate_batch(path, target='epithelial'):
bags = []
for each_path in path:
name_img = []
img = []
img_path = glob.glob(each_path + '/*.bmp')
num_ins = len(img_path)
instance_label = [int(target in temp) for temp in img_path]
label = int(each_path.split('/')[-2])
# if label == 1:
# curr_label = np.ones(num_ins,dtype=np.uint8)
# else:
# curr_label = np.zeros(num_ins, dtype=np.uint8)
for each_img in img_path:
img_data = np.asarray( imageio.imread(each_img), dtype = np.uint8)
img.append(np.expand_dims(img_data,0))
name_img.append(each_img.split('/')[-1])
stack_img = np.concatenate(img, axis=0)
bags.append((stack_img, instance_label, name_img))
return bags
def mi_collate_img(batch):
# collate_fn for pytorch DataLoader
bag = [item[0] for item in batch]
bag = torch.tensor(np.concatenate(bag, axis = 0))
bag_idx = [item[1] for item in batch]
bag_idx = torch.tensor(np.concatenate(bag_idx, axis = 0))
bag_label = [item[2] for item in batch]
bag_label = torch.tensor(bag_label)
instance_label = [item[3] for item in batch]
instance_label = torch.tensor(np.concatenate(instance_label, axis = 0))
return bag, bag_idx, bag_label, instance_label
class mi_imagedata(Dataset):
def __init__(self, data, cuda, transformations = None, batch_size=32, shuffle=True):
self.device = torch.device('cuda')
self.cuda = cuda
self.shuffle = shuffle
self.batch_size = batch_size
self.transforms = transformations
self.bags = [bag[0] for bag in data]
self.bag_label = [max(bag[1]) for bag in data]
self.instance_label = [bag[1] for bag in data]
def __len__(self):
return len(self.bag_label)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
bag = self.bags[idx]
if self.transforms is not None:
temp = [self.transforms(item) for item in bag]
bag = torch.stack(temp)
bag_label = self.bag_label[idx]
bag_idx = np.repeat(idx, bag.shape[0])
instance_label = self.instance_label[idx]
return bag, bag_idx, bag_label, instance_label
def load_dataset(dataset_path, n_folds, seed=0):
# load datapath from path
pos_path = glob.glob(dataset_path+'1//img*')
neg_path = glob.glob(dataset_path+'0//img*')
pos_num = len(pos_path)
neg_num = len(neg_path)
all_path = pos_path + neg_path
#num_bag = len(all_path)
kf = KFold(n_splits=n_folds, shuffle=True, random_state=seed)
datasets = []
for train_idx, test_idx in kf.split(all_path):
dataset = {}
dataset['train'] = [all_path[ibag] for ibag in train_idx]
dataset['test'] = [all_path[ibag] for ibag in test_idx]
datasets.append(dataset)
return datasets
def map_bag_embeddings(zx_q, zy_q, bag_idx, list_g):
bag_latent_embeddings = torch.empty(zx_q.shape[0], zy_q.shape[1])
for _, g in enumerate(list_g):
group_label = g
samples_group = bag_idx.eq(group_label).nonzero().squeeze()
if samples_group.numel() >1 :
for index in samples_group:
# print("index: ", index)
bag_latent_embeddings[index] = zy_q[list_g.index(group_label)]
else:
bag_latent_embeddings[samples_group] = zy_q[list_g.index(group_label)]
return bag_latent_embeddings
def reorder_y(bag_label, bag_idx, list_g):
def unique_keeporder(sequence):
seen = set()
return [x for x in sequence if not (x in seen or seen.add(x))]
bag_idx = bag_idx.tolist()
index = unique_keeporder(bag_idx)
y_reordered = torch.empty(bag_label.shape)
for i in range(len(list_g)):
y_reordered[i] = bag_label[index.index(list_g[i])]
return y_reordered
def get_bag_labels(bag_idx):
list_bags_labels = []
bags = (bag_idx).unique()
for _, g in enumerate(bags):
bag_label = g.item()
list_bags_labels.append(bag_label)
return list_bags_labels
def kaiming_uniform_(tensor, gain=1):
import math
r"""Adapted from https://pytorch.org/docs/0.4.1/_modules/torch/nn/init.html#xavier_normal_
"""
dimensions = tensor.size()
if len(dimensions) == 1: # bias
fan_in = tensor.size(0)
elif len(dimensions) == 2: # Linear
fan_in = tensor.size(1)
else:
num_input_fmaps = tensor.size(1)
if tensor.dim() > 2:
receptive_field_size = tensor[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
std = gain/ math.sqrt(fan_in)
bound = math.sqrt(3.0) * std
with torch.no_grad():
return tensor.uniform_( -bound, bound )
def weights_init(layer):
r"""Apparently in Chainer Lecun normal initialisation was the default one
"""
if isinstance(layer, nn.Linear):
layer.bias.data.zero_()
kaiming_uniform_(layer.weight)
# torch.nn.init.kaiming_uniform_(layer.bias)
# torch.nn.init.kaiming_uniform_(layer.weight)
# %%
def get_loss(model, bags, bag_index, bag_label):
bags = bags.to(torch.device('cuda'))
with torch.no_grad():
elbo, auxiliary_y, reconstruction_proba, KL_zx = \
model.loss_function(bags, bag_index, bag_label, 1000)
return elbo, auxiliary_y, reconstruction_proba, KL_zx
def get_accuracy(model, bags, bag_idx, bag_label, instance_label):
with torch.no_grad():
pred_instance = model.classifier_ins(bags, bag_idx.cpu())
instance_auc = roc_auc_score(instance_label.cpu(), pred_instance.cpu())
instance_aucpr = average_precision_score(instance_label.cpu(), pred_instance.cpu())
return instance_auc,instance_aucpr
# %%
def training_procedure(FLAGS, input_dim, dataset, target):
device = torch.device('cuda')
train_bags = dataset['train']
test_bags = dataset['test']
# train_bags = train_bags + test_bags
# convert bag to batch
train_set = generate_batch(train_bags, target)
test_set = generate_batch(test_bags, target)
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=(-90, 90)),
transforms.RandomVerticalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize((123.68/255, 116.779/255, 103.939/255), (0.5,0.5, 0.5)),
])
transform_test= transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Normalize((123.68/255, 116.779/255, 103.939/255), (0.5,0.5, 0.5)),
])
train_data = mi_imagedata(train_set, FLAGS.cuda, transformations = transform)
dataloader = DataLoader(train_data, batch_size = FLAGS.batch_size, shuffle=True, num_workers = 4, collate_fn=mi_collate_img)
model = cmil(FLAGS).to(device)
model.apply(weights_init)
model.train()
auto_encoder_optimizer = torch.optim.AdamW(model.parameters(), lr=FLAGS.initial_learning_rate, weight_decay=FLAGS.weight_decay)
best_loss = 100000000.
for epoch in tqdm(range(0, FLAGS.end_epoch)):
elbo_epoch = 0
recon_epoch = 0
y_epoch = 0
KL_ins_epoch = 0
for (i, batch) in enumerate(dataloader):
bag, bag_idx, bag_label, instance_label = batch
auto_encoder_optimizer.zero_grad()
elbo, class_y_loss, reconstruction_proba, KL_instance = \
model.loss_function(bag.float().to(device), bag_idx.to(device), bag_label.to(device), epoch)
elbo.backward()
auto_encoder_optimizer.step()
elbo_epoch += elbo
recon_epoch += reconstruction_proba
y_epoch += class_y_loss
KL_ins_epoch += KL_instance
elbo_epoch = elbo_epoch / (dataloader.__len__()/batch_size)
recon_epoch = recon_epoch / (dataloader.__len__()/batch_size)
y_epoch = y_epoch / (dataloader.__len__()/batch_size)
KL_ins_epoch = KL_ins_epoch / (dataloader.__len__()/batch_size)
#
if elbo_epoch < best_loss:
best_loss = elbo_epoch
torch.save(model.state_dict(), '/home/user/Code/weights/colon_weights.pt')
model.load_state_dict(torch.load('/home/user/Code/weights/colon_weights.pt'))
test_data = mi_imagedata(test_set, FLAGS.cuda, transformations = transform_test)
testloader = DataLoader(test_data, batch_size = test_data.__len__(), shuffle=False, num_workers = 0, collate_fn=mi_collate_img)
test_bag, test_bag_idx,test_bag_label, test_instance_label = next(iter(testloader))
test_auc, test_aucpr = get_accuracy(model, test_bag.float().to(device), test_bag_idx, test_bag_label, test_instance_label)
test_auc, test_aucpr = get_accuracy(model, test_bag.float().to(device), test_bag_idx, test_bag_label, test_instance_label)
print("Test AUC: {:.4f}, Test AUC-PR: {:.4f}".format(test_auc, test_aucpr))
return test_aucpr,model
# %%
import argparse
import torch
import numpy as np
import pandas as pd
from sklearn.model_selection import ParameterGrid
import matplotlib.pyplot as plt
import glob
from sklearn.model_selection import KFold
import imageio
param_grid = {'instance_dim': [24], 'aux_loss_multiplier_y': [1000.], 'kl_divergence_coef':[1]}
grid = ParameterGrid(param_grid)
for params in grid:
print(params)
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type=bool, default=True, help="run the following code on a GPU")
parser.add_argument('--num_classes', type=int, default=2, help="number of classes on which the data set trained")
parser.add_argument('--initial_learning_rate', type=float, default=1e-4, help="starting learning rate")
parser.add_argument("--weight-decay", default=1e-4, type=float)
parser.add_argument('--instance_dim', type=int, default=params['instance_dim'], help="dimension of instance factor latent space")
parser.add_argument('--reconstruction_coef', type=float, default=1., help="coefficient for reconstruction term")
parser.add_argument('--kl_divergence_coef', type=float, default=params['kl_divergence_coef'], help="coefficient for instance KL-Divergence loss term")
parser.add_argument('--aux_loss_multiplier_y', type=float, default=params['aux_loss_multiplier_y'])
parser.add_argument('--start_epoch', type=int, default=0, help="flag to set the starting epoch for training")
parser.add_argument('--end_epoch', type=int, default=100, help="flag to indicate the final epoch of training")
parser.add_argument('--batch_size', type=int, default=128, help="flag to indicate the final epoch of training")
parser.add_argument('-w', '--warmup', type=int, default=0, metavar='N', help='number of epochs for warm-up. Set to 0 to turn warmup off.')
FLAGS = parser.parse_args(args=[])
batch_size = 32
data_path = '/home/user/datasets/ColonCancer/'
input_dim = (27,27,3)
n_folds = 5
dataset = load_dataset(dataset_path=data_path, n_folds=n_folds,seed = 0)
test_aucpr = []
for ifold in range(5):
fold_aucpr,model = training_procedure(FLAGS, input_dim, dataset[ifold], target = 'epithelial')
print('Test AUCPR is: {:.4f}'.format(fold_aucpr))