-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBERT_TRAIN.py
353 lines (293 loc) · 12.8 KB
/
BERT_TRAIN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#! usr/bin/env python3
# -*- coding:utf-8 -*-
"""
Copyright 2018 The Google AI Language Team Authors.
BASED ON Google_BERT.
@Author: Wei Yi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import modeling
import optimization
import tokenization
import tensorflow as tf
from tensorflow.python.ops import math_ops
import tf_metrics
import pickle
import utils
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer(
"eval_examples", 1000,
"Total eval examples",
)
flags.DEFINE_integer(
"pred_examples", 1000,
"Total pred examples",
)
flags.DEFINE_string(
"data_dir1", "./tfdata/train",
"The input datadir.",
)
flags.DEFINE_string(
"bert_config_file1", "./bert_config.json",
"The config json file corresponding to the pre-trained BERT model."
)
flags.DEFINE_string(
"task_name2", "SEG", "The name of the task to train."
)
flags.DEFINE_string(
"output_dir2", "output/",
"The output directory where the model checkpoints will be written."
)
## Other parameters
flags.DEFINE_string(
"init_checkpoint", "./model.ckpt",
"Initial checkpoint (usually from a pre-trained BERT model)."
)
flags.DEFINE_bool(
"do_lower_case2", True,
"Whether to lower case the input text."
)
flags.DEFINE_integer(
"max_seq_length2", 24,
"The maximum total input sequence length after WordPiece tokenization."
)
flags.DEFINE_bool(
"do_train", True,
"Whether to run training."
)
flags.DEFINE_bool("use_tpu2", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_predict", False, "Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 128, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 128, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 64, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 2e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 50.0, "Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 1000000000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 50,
"How many steps to make in each estimator call.")
flags.DEFINE_string("vocab_file2", "./vocab.txt",
"The vocabulary file that the BERT model was trained on.")
tf.flags.DEFINE_string("master2", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores2", 8,
"Only used if `use_tpu2` is True. Total number of TPU cores to use.")
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
# "label_ids":tf.VarLenFeature(tf.int64),
# "label_mask": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
return d
return input_fn
def create_model(bert_config, is_training, input_ids, input_mask,
segment_ids, labels, num_labels, use_one_hot_embeddings):
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings
)
output_layer = model.get_sequence_output()
hidden_size = output_layer.shape[-1].value
output_weight = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02)
)
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer()
)
with tf.variable_scope("loss"):
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
output_layer = tf.reshape(output_layer, [-1, hidden_size])
logits = tf.matmul(output_layer, output_weight, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [-1, FLAGS.max_seq_length2, 5])
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
probabilities = tf.nn.softmax(logits, axis=-1)
predict = tf.argmax(probabilities, axis=-1)
return (loss, per_example_loss, logits, predict)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
# label_mask = features["label_mask"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, predicts) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
#tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
# init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
# def metric_fn(label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
precision = tf_metrics.precision(label_ids, predictions, 5, [1, 2], average="macro")
#recall = tf_metrics.recall(label_ids, predictions, 13, [1, 2, 4, 5, 6, 7, 8, 9], average="macro")
#f = tf_metrics.f1(label_ids, predictions, 13, [1, 2, 4, 5, 6, 7, 8, 9], average="macro")
#
return {
"eval_precision": precision
#"eval_recall": recall,
#"eval_f": f,
# "eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
# eval_metrics = (metric_fn, [label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions=predicts, scaffold_fn=scaffold_fn
)
return output_spec
return model_fn
def get_labels():
#the X is for english token
#return ["[BOS]", "[IOS]", "X", "[CLS]", "[SEP]"]
return ["[BOS]", "[IOS]", "[CLS]", "[SEP]"]
def seg_train():
tf.logging.set_verbosity(tf.logging.INFO)
#if not FLAGS.do_train and not FLAGS.do_eval:
# raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file1)
#FLAGS.train_batch_size = min(128, utils.read_from_pkl("data/selected_sents.pkl"))
if FLAGS.max_seq_length2 > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length2, bert_config.max_position_embeddings))
task_name2 = FLAGS.task_name2.lower()
label_list = get_labels()
tpu_cluster_resolver = None
if FLAGS.use_tpu2 and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir="output/",
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if FLAGS.do_train:
train_examples = utils.read_from_pkl("data/selected_sents.pkl")
num_train_epochs = utils.read_from_pkl("data/train_iter.pkl")
num_train_steps = int(
train_examples / FLAGS.train_batch_size * num_train_epochs)
#if os.path.exists("data/train_step.pkl"):
# last_train_step = utils.read_from_pkl("data/train_step.pkl")
# num_train_steps += last_train_step
#utils.save_as_pkl("data/train_step.pkl", num_train_steps)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list) + 1,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu2,
use_one_hot_embeddings=FLAGS.use_tpu2)
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu2,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
train_file = ["./tfdata/train.tf_record"]
tf.logging.info("***** Running training *****")
tf.logging.info(" Train iter = %d", num_train_epochs)
tf.logging.info(" Num examples = %d", utils.read_from_pkl("data/selected_sents.pkl"))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length2,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, steps=num_train_steps)