forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
197 lines (173 loc) · 7.3 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import functools
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
from official.nlp.xlnet import xlnet_config
from official.nlp.xlnet import xlnet_modeling as modeling
from official.utils.misc import tpu_lib
flags.DEFINE_integer("n_class", default=2, help="Number of classes.")
flags.DEFINE_string(
"summary_type",
default="last",
help="Method used to summarize a sequence into a vector.")
FLAGS = flags.FLAGS
def get_classificationxlnet_model(model_config,
run_config,
n_class,
summary_type="last"):
model = modeling.ClassificationXLNetModel(
model_config, run_config, n_class, summary_type, name="model")
return model
def run_evaluation(strategy,
test_input_fn,
eval_steps,
model,
step,
eval_summary_writer=None):
"""Run evaluation for classification task.
Args:
strategy: distribution strategy.
test_input_fn: input function for evaluation data.
eval_steps: total number of evaluation steps.
model: keras model object.
step: current train step.
eval_summary_writer: summary writer used to record evaluation metrics. As
there are fake data samples in validation set, we use mask to get rid of
them when calculating the accuracy. For the reason that there will be
dynamic-shape tensor, we first collect logits, labels and masks from TPU
and calculate the accuracy via numpy locally.
Returns:
A float metric, accuracy.
"""
def _test_step_fn(inputs):
"""Replicated validation step."""
inputs["mems"] = None
_, logits = model(inputs, training=False)
return logits, inputs["label_ids"], inputs["is_real_example"]
@tf.function
def _run_evaluation(test_iterator):
"""Runs validation steps."""
logits, labels, masks = strategy.experimental_run_v2(
_test_step_fn, args=(next(test_iterator),))
return logits, labels, masks
test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
correct = 0
total = 0
for _ in range(eval_steps):
logits, labels, masks = _run_evaluation(test_iterator)
logits = strategy.experimental_local_results(logits)
labels = strategy.experimental_local_results(labels)
masks = strategy.experimental_local_results(masks)
merged_logits = []
merged_labels = []
merged_masks = []
for i in range(strategy.num_replicas_in_sync):
merged_logits.append(logits[i].numpy())
merged_labels.append(labels[i].numpy())
merged_masks.append(masks[i].numpy())
merged_logits = np.vstack(np.array(merged_logits))
merged_labels = np.hstack(np.array(merged_labels))
merged_masks = np.hstack(np.array(merged_masks))
real_index = np.where(np.equal(merged_masks, 1))
correct += np.sum(
np.equal(
np.argmax(merged_logits[real_index], axis=-1),
merged_labels[real_index]))
total += np.shape(real_index)[-1]
accuracy = float(correct) / float(total)
logging.info("Train step: %d / acc = %d/%d = %f", step, correct, total,
accuracy)
if eval_summary_writer:
with eval_summary_writer.as_default():
tf.summary.scalar("eval_acc", float(correct) / float(total), step=step)
eval_summary_writer.flush()
return accuracy
def get_metric_fn():
train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy(
"acc", dtype=tf.float32)
return train_acc_metric
def main(unused_argv):
del unused_argv
if FLAGS.strategy_type == "mirror":
strategy = tf.distribute.MirroredStrategy()
elif FLAGS.strategy_type == "tpu":
cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
else:
raise ValueError("The distribution strategy type is not supported: %s" %
FLAGS.strategy_type)
if strategy:
logging.info("***** Number of cores used : %d",
strategy.num_replicas_in_sync)
train_input_fn = functools.partial(data_utils.get_classification_input_data,
FLAGS.train_batch_size, FLAGS.seq_len,
strategy, True, FLAGS.train_tfrecord_path)
test_input_fn = functools.partial(data_utils.get_classification_input_data,
FLAGS.test_batch_size, FLAGS.seq_len,
strategy, False, FLAGS.test_tfrecord_path)
total_training_steps = FLAGS.train_steps
steps_per_loop = FLAGS.iterations
eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size)
eval_fn = functools.partial(run_evaluation, strategy, test_input_fn,
eval_steps)
optimizer, learning_rate_fn = optimization.create_optimizer(
FLAGS.learning_rate,
total_training_steps,
FLAGS.warmup_steps,
adam_epsilon=FLAGS.adam_epsilon)
model_config = xlnet_config.XLNetConfig(FLAGS)
run_config = xlnet_config.create_run_config(True, False, FLAGS)
model_fn = functools.partial(get_classificationxlnet_model, model_config,
run_config, FLAGS.n_class, FLAGS.summary_type)
input_meta_data = {}
input_meta_data["d_model"] = FLAGS.d_model
input_meta_data["mem_len"] = FLAGS.mem_len
input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
strategy.num_replicas_in_sync)
input_meta_data["n_layer"] = FLAGS.n_layer
input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
input_meta_data["n_class"] = FLAGS.n_class
training_utils.train(
strategy=strategy,
model_fn=model_fn,
input_meta_data=input_meta_data,
eval_fn=eval_fn,
metric_fn=get_metric_fn,
train_input_fn=train_input_fn,
init_checkpoint=FLAGS.init_checkpoint,
init_from_transformerxl=FLAGS.init_from_transformerxl,
total_training_steps=total_training_steps,
steps_per_loop=steps_per_loop,
optimizer=optimizer,
learning_rate_fn=learning_rate_fn,
model_dir=FLAGS.model_dir,
save_steps=FLAGS.save_steps)
if __name__ == "__main__":
assert tf.version.VERSION.startswith('2.')
app.run(main)