-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFASTLin_ProcessLinearModels.m
250 lines (234 loc) · 14.7 KB
/
FASTLin_ProcessLinearModels.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
function LinearModels = FASTLin_ProcessLinearModels(LinModelFile,FASTOutPath,ReduceModel,SaveFlag)
% FAST parameters
outPrefix = 'lin';
outSuffix = '.outb';
outFiles = dir(fullfile(FASTOutPath,[outPrefix,'*',outSuffix]));
nLinCases = length(outFiles);
if nLinCases <= 10
numstring = '%01d';
else
numstring = '%02d';
end
% Initialize
MBC = cell(1,nLinCases);
matData = cell(1,nLinCases);
WindSpeed = zeros(1,nLinCases);
P = cell(1,nLinCases);
% Temporary parameters
iCase = 1;
iAz = 1;
% Read FST, Servo, and DISCON files
FST = FAST2Matlab(fullfile(FASTOutPath,[outPrefix,'_',num2str(iCase-1,numstring),'.fst']));
idx = find(contains(FST.Label,'ServoFile'));
ServoFile = replace(FST.Val{idx},'"','');
Servo = FAST2Matlab(fullfile(FASTOutPath,ServoFile));
idx = find(contains(Servo.Label,'DLL_InFile'));
DISCONFile = replace(Servo.Val{idx},'"','');
DISCON = ROSCO2Matlab(fullfile(FASTOutPath,DISCONFile));
% Obtain linearized model state, control, and output variables
LinResult = ReadFASTLinear(fullfile(FASTOutPath,[outPrefix,'_',num2str(iCase-1,numstring),'.',num2str(iAz),'.lin']));
nx = size(LinResult.x_op,1);
nu = size(LinResult.u_op,1);
ny = size(LinResult.y_op,1);
xLabel = LinResult.x_desc;
uLabel = LinResult.u_desc;
yLabel = LinResult.y_desc;
for iCase = 1:nLinCases
% Read .lin files perform MBC3 transformation to obtain the linear
% model independent to the azimuth angle of blades
% Process .lin files
LinFilesS{iCase} = dir(fullfile(FASTOutPath,[outPrefix,'_',num2str(iCase-1,numstring),'.*.lin']));
if isempty(LinFilesS{1})
error('WARNING: Didn''t find any linear files');
end
for iFile = 1:length(LinFilesS{iCase})
LinFiles{iFile} = fullfile(FASTOutPath,LinFilesS{iCase}(iFile).name);
end
[MBC{iCase},matData{iCase}] = fx_mbc3(LinFiles);
% Obtain FAST parameters and subfile parameters
FSTName = fullfile(FASTOutPath,[outPrefix,'_',num2str(iCase-1,numstring),'.fst']);
FP = FAST2Matlab(FSTName,2); % FAST parameters, 2 lines of header (v8)
[IfWP, InflowFile] = GetFASTPar_Subfile(FP, 'InflowFile', FASTOutPath, FASTOutPath);
[EdP, ElastoFile] = GetFASTPar_Subfile(FP, 'EDFile', FASTOutPath, FASTOutPath);
% State variable indices
AzDesc = 'ED Variable speed generator DOF'; % Azimuth [rad]
AzInd = find(contains(matData{iCase}.DescStates,AzDesc));
indStates = 1:length(matData{iCase}.DescStates);
indStates(AzInd) = []; % Remove azimuth state
% Control variable indices
WindDesc = 'IfW Extended input: horizontal wind speed';
TqDesc = 'ED Generator torque';
PitchDesc = 'ED Extended input: collective blade-pitch command';
indInp.WindInd = find(contains(matData{iCase}.DescCntrlInpt,WindDesc));
indInp.TqInd = find(contains(matData{iCase}.DescCntrlInpt,TqDesc));
indInp.PitchInd = find(contains(matData{iCase}.DescCntrlInpt,PitchDesc));
indInps = [indInp.WindInd, indInp.TqInd, indInp.PitchInd];
indInpsLbl = {'IfW WindSpeedHor', 'ED GenTorq', 'ED BldPitchCommand'};
% Output variable indices
GenPwrDesc = 'SrvD GenPwr'; % Electrical generator power [kW]
GenSpeedDesc = 'ED GenSpeed'; % Angular speed of high-speed shaft and generator [rpm]
IPDeflDesc = 'ED IPDefl1'; % In-plane tip deflection of blade 1 (Same values for all blades) [m]
NcIMURAxsDesc = 'ED NcIMURAxs'; % Nacelle IMU rotational acceleration in xs-axis [deg/s^2]
NcIMURAysDesc = 'ED NcIMURAys'; % Nacelle IMU rotational acceleration in ys-axis [deg/s^2]
NcIMURAzsDesc = 'ED NcIMURAzs'; % Nacelle IMU rotational acceleration in zs-axis [deg/s^2]
NcIMUTAxsDesc = 'ED NcIMUTAxs'; % Nacelle IMU translational acceleration in xs-axis [deg/s^2]
NcIMUTAysDesc = 'ED NcIMUTAys'; % Nacelle IMU translational acceleration in ys-axis [deg/s^2]
NcIMUTAzsDesc = 'ED NcIMUTAzs'; % Nacelle IMU translational acceleration in zs-axis [deg/s^2]
OoPDeflDesc = 'ED OoPDefl1'; % Out-of-plane tip deflection of blade 1 (Same values for all blades) [m]
PlfmHeaveDesc = 'ED PtfmHeave'; % Platform vertical heave displacement [m]
PlfmPitchDesc = 'ED PtfmPitch'; % Platform pitch tilt angular displacement [deg]
PlfmRollDesc = 'ED PtfmRoll'; % Platform roll tilt angular displacement [deg]
PlfmSurgeDesc = 'ED PtfmSurge'; % Platform horizontal surge displacement [m]
PlfmSwayDesc = 'ED PtfmSway'; % Platform horizontal sway displacement [m]
PlfmYawDesc = 'ED PtfmYaw'; % Platform yaw angular displacement [deg]
RotThrustDesc = 'ED RotThrust'; % Rotor (low speed shaft) thrust force [kN]
RotTqDesc = 'ED RotTorq'; % Rotor (low speed shaft) torque [kN-m]
TTDspFADesc = 'ED TTDspFA'; % Tower top / yaw-bearing fore-aft deflection [m]
TTDspSSDesc = 'ED TTDspSS'; % Tower top / yaw-bearing side-to-side deflection [m]
TTDspTwstDesc = 'ED TTDspTwst'; % Tower top / yaw-bearing angular torsion deflection [deg]
TwrBsFxtDesc = 'ED TwrBsFxt'; % Tower base fore-aft shear force [kN]
TwrBsFytDesc = 'ED TwrBsFyt'; % Tower base side-to-side shear force [kN]
TwrBsFztDesc = 'ED TwrBsFzt'; % Tower base axial force [kN]
TwrBsMxtDesc = 'ED TwrBsMxt'; % Tower base roll (side-to-side) moment [kN-m]
TwrBsMytDesc = 'ED TwrBsMyt'; % Tower base pitching (fore-aft) moment [kN-m]
TwrBsMztDesc = 'ED TwrBsMzt'; % Tower base yaw moment [kN-m]
YawBrFxpDesc = 'ED YawBrFxp'; % Tower top / yaw-bearing fore-aft shear force [kN]
YawBrFypDesc = 'ED YawBrFyp'; % Tower top / yaw-bearing side-to-side shear force [kN]
YawBrFzpDesc = 'ED YawBrFzp'; % Tower top / yaw-bearing axial force [kN]
YawBrMxpDesc = 'ED YawBrMxp'; % Tower top / yaw-bearing roll moment [kN-m]
YawBrMypDesc = 'ED YawBrMyp'; % Tower top / yaw-bearing pitch moment [kN-m]
YawBrMzpDesc = 'ED YawBrMzp'; % Tower top / yaw-bearing yaw moment [kN-m]
RtAeroCpDesc = 'AD RtAeroCp'; % Rotor aerodynamic power coefficient [-]
RtAeroFxhDesc = 'AD RtAeroFxh'; % Rotor aerodynamic load in x-direction [N]
RtAeroFyhDesc = 'AD RtAeroFyh'; % Rotor aerodynamic load in y-direction [N]
RtAeroFzhDesc = 'AD RtAeroFzh'; % Rotor aerodynamic load in z-direction [N]
RtAeroMxhDesc = 'AD RtAeroMxh'; % Rotor aerodynamic moment in x-direction [N-m]
RtAeroMyhDesc = 'AD RtAeroMyh'; % Rotor aerodynamic moment in y-direction [N-m]
RtAeroMzhDesc = 'AD RtAeroMzh'; % Rotor aerodynamic moment in z-direction [N-m]
RtTSRDesc = 'AD RtTSR'; % Rotor tip-speed ratio [-]
RtVAvgxhDesc = 'AD RtVAvgxh'; % Rotor-disk-averaged relative wind velocity in x-direction [m/s]
Wave1ElevDesc = 'HD Wave1Elev'; % Wave motion [m]
indOut.GenPwrInd = find(contains(matData{iCase}.DescOutput,GenPwrDesc));
indOut.GenSpeedInd = find(contains(matData{iCase}.DescOutput,GenSpeedDesc));
indOut.IPDeflInd = find(contains(matData{iCase}.DescOutput,IPDeflDesc));
indOut.NcIMURAxsInd = find(contains(matData{iCase}.DescOutput,NcIMURAxsDesc));
indOut.NcIMURAysInd = find(contains(matData{iCase}.DescOutput,NcIMURAysDesc));
indOut.NcIMURAzsInd = find(contains(matData{iCase}.DescOutput,NcIMURAzsDesc));
indOut.NcIMUTAxsInd = find(contains(matData{iCase}.DescOutput,NcIMUTAxsDesc));
indOut.NcIMUTAysInd = find(contains(matData{iCase}.DescOutput,NcIMUTAysDesc));
indOut.NcIMUTAzsInd = find(contains(matData{iCase}.DescOutput,NcIMUTAzsDesc));
indOut.OoPDeflInd = find(contains(matData{iCase}.DescOutput,OoPDeflDesc));
indOut.PlfmHeaveInd = find(contains(matData{iCase}.DescOutput,PlfmHeaveDesc));
indOut.PlfmPitchInd = find(contains(matData{iCase}.DescOutput,PlfmPitchDesc));
indOut.PlfmRollInd = find(contains(matData{iCase}.DescOutput,PlfmRollDesc));
indOut.PlfmSurgeInd = find(contains(matData{iCase}.DescOutput,PlfmSurgeDesc));
indOut.PlfmSwayInd = find(contains(matData{iCase}.DescOutput,PlfmSwayDesc));
indOut.PlfmYawInd = find(contains(matData{iCase}.DescOutput,PlfmYawDesc));
indOut.RotThrustInd = find(contains(matData{iCase}.DescOutput,RotThrustDesc));
indOut.RotTqInd = find(contains(matData{iCase}.DescOutput,RotTqDesc));
indOut.TTDspFAInd = find(contains(matData{iCase}.DescOutput,TTDspFADesc));
indOut.TTDspSSInd = find(contains(matData{iCase}.DescOutput,TTDspSSDesc));
indOut.TTDspTwstInd = find(contains(matData{iCase}.DescOutput,TTDspTwstDesc));
indOut.TwrBsFxtInd = find(contains(matData{iCase}.DescOutput,TwrBsFxtDesc));
indOut.TwrBsFytInd = find(contains(matData{iCase}.DescOutput,TwrBsFytDesc));
indOut.TwrBsFztInd = find(contains(matData{iCase}.DescOutput,TwrBsFztDesc));
indOut.TwrBsMxtInd = find(contains(matData{iCase}.DescOutput,TwrBsMxtDesc));
indOut.TwrBsMytInd = find(contains(matData{iCase}.DescOutput,TwrBsMytDesc));
indOut.TwrBsMztInd = find(contains(matData{iCase}.DescOutput,TwrBsMztDesc));
indOut.YawBrFxpInd = find(contains(matData{iCase}.DescOutput,YawBrFxpDesc));
indOut.YawBrFypInd = find(contains(matData{iCase}.DescOutput,YawBrFypDesc));
indOut.YawBrFzpInd = find(contains(matData{iCase}.DescOutput,YawBrFzpDesc));
indOut.YawBrMxpInd = find(contains(matData{iCase}.DescOutput,YawBrMxpDesc));
indOut.YawBrMypInd = find(contains(matData{iCase}.DescOutput,YawBrMypDesc));
indOut.YawBrMzpInd = find(contains(matData{iCase}.DescOutput,YawBrMzpDesc));
indOut.RtAeroCpInd = find(contains(matData{iCase}.DescOutput,RtAeroCpDesc));
indOut.RtAeroFxhInd = find(contains(matData{iCase}.DescOutput,RtAeroFxhDesc));
indOut.RtAeroFyhInd = find(contains(matData{iCase}.DescOutput,RtAeroFyhDesc));
indOut.RtAeroFzhInd = find(contains(matData{iCase}.DescOutput,RtAeroFzhDesc));
indOut.RtAeroMxhInd = find(contains(matData{iCase}.DescOutput,RtAeroMxhDesc));
indOut.RtAeroMyhInd = find(contains(matData{iCase}.DescOutput,RtAeroMyhDesc));
indOut.RtAeroMzhInd = find(contains(matData{iCase}.DescOutput,RtAeroMzhDesc));
indOut.RtTSRInd = find(contains(matData{iCase}.DescOutput,RtTSRDesc));
indOut.RtVAvgxhInd = find(contains(matData{iCase}.DescOutput,RtVAvgxhDesc));
indOut.Wave1ElevInd = find(contains(matData{iCase}.DescOutput,Wave1ElevDesc));
indOuts = [indOut.GenPwrInd, indOut.GenSpeedInd, indOut.IPDeflInd, ...
indOut.NcIMURAxsInd, indOut.NcIMURAysInd, indOut.NcIMURAzsInd, ...
indOut.NcIMUTAxsInd, indOut.NcIMUTAysInd, indOut.NcIMUTAzsInd, indOut.OoPDeflInd, ...
indOut.PlfmHeaveInd, indOut.PlfmPitchInd, indOut.PlfmRollInd, ...
indOut.PlfmSurgeInd, indOut.PlfmSwayInd, indOut.PlfmYawInd, ...
indOut.RotThrustInd, indOut.RotTqInd, ...
indOut.TTDspFAInd, indOut.TTDspSSInd, indOut.TTDspTwstInd, ...
indOut.TwrBsFxtInd, indOut.TwrBsFytInd, indOut.TwrBsFztInd, ...
indOut.TwrBsMxtInd, indOut.TwrBsMytInd, indOut.TwrBsMztInd, ...
indOut.YawBrFxpInd, indOut.YawBrFypInd, indOut.YawBrFzpInd, ...
indOut.YawBrMxpInd, indOut.YawBrMypInd, indOut.YawBrMzpInd, indOut.RtAeroCpInd, ...
indOut.RtAeroFxhInd, indOut.RtAeroFyhInd, indOut.RtAeroFzhInd, ...
indOut.RtAeroMxhInd, indOut.RtAeroMyhInd, indOut.RtAeroMzhInd, ...
indOut.RtTSRInd, indOut.RtVAvgxhInd, indOut.Wave1ElevInd];
indOutsLbl = {GenPwrDesc, GenSpeedDesc, IPDeflDesc, ...
NcIMURAxsDesc, NcIMURAysDesc, NcIMURAzsDesc, ...
NcIMUTAxsDesc, NcIMUTAysDesc, NcIMUTAzsDesc, OoPDeflDesc, ...
PlfmHeaveDesc, PlfmPitchDesc, PlfmRollDesc, ...
PlfmSurgeDesc, PlfmSwayDesc, PlfmYawDesc, ...
RotThrustDesc, RotTqDesc, ...
TTDspFADesc, TTDspSSDesc, TTDspTwstDesc, ...
TwrBsFxtDesc, TwrBsFytDesc, TwrBsFztDesc, ...
TwrBsMxtDesc, TwrBsMytDesc, TwrBsMztDesc, ...
YawBrFxpDesc, YawBrFypDesc, YawBrFzpDesc, ...
YawBrMxpDesc, YawBrMypDesc, YawBrMzpDesc, RtAeroCpDesc, ...
RtAeroFxhDesc, RtAeroFyhDesc, RtAeroFzhDesc, ...
RtAeroMxhDesc, RtAeroMyhDesc, RtAeroMzhDesc, ...
RtTSRDesc, RtVAvgxhDesc, Wave1ElevDesc};
% Obtain operating point values
SS_Op(iCase).xop = mean(matData{iCase}.xop,2);
SS_Op(iCase).xdop = mean(matData{iCase}.xdop,2);
SS_Op(iCase).uop = mean(matData{iCase}.uop,2);
SS_Op(iCase).yop = mean(matData{iCase}.yop,2);
% Reduce operating point vectors with indices of control and output variables
SS_Ops(iCase).xop = SS_Op(iCase).xop(indStates',:);
SS_Ops(iCase).xdop = SS_Op(iCase).xdop(indStates',:);
SS_Ops(iCase).uop = SS_Op(iCase).uop(indInps',:);
SS_Ops(iCase).yop = SS_Op(iCase).yop(indOuts',:);
WindSpeed(iCase) = SS_Ops(iCase).uop(indInp.WindInd);
% Form SS system
P{iCase} = ss( ...
MBC{iCase}.AvgA(indStates,indStates), ...
MBC{iCase}.AvgB(indStates,indInps), ...
MBC{iCase}.AvgC(indOuts,indStates), ...
MBC{iCase}.AvgD(indOuts,indInps));
% State Labels
P{iCase}.StateName = MBC{iCase}.DescStates(indStates);
% Input Labels
P{iCase}.InputName = indInpsLbl;
% Output Labels
P{iCase}.OutputName = indOutsLbl;
% Save original full size model
P_full{iCase} = P{iCase};
SS_Ops_full(iCase) = SS_Ops(iCase);
% Model reduction
if ReduceModel
[P{iCase},UMat{iCase}] = minreal(P{iCase});
% Operating point re-calculation for reduced model
%funLSQ = @(x) (P{iCase}.C*x + P{iCase}.D*SS_Ops(iCase).uop - SS_Ops(iCase).yop)./(abs(SS_Ops(iCase).yop)+sqrt(eps));
%xop = lsqnonlin(funLSQ,zeros(size(P{iCase}.A,1),1));
xop = UMat{iCase}*SS_Ops_full(iCase).xop;
xop = xop(1:size(P{iCase}.A,1),1);
SS_Ops(iCase).xop = xop;
SS_Ops(iCase).xdop = P{iCase}.A*xop + P{iCase}.B*SS_Ops(iCase).uop;
end
end
% Return values
LinearModels.P = P;
LinearModels.P_full = P_full;
LinearModels.UMat = UMat;
LinearModels.SS_Ops = SS_Ops;
LinearModels.SS_Ops_full = SS_Ops_full;
LinearModels.WindSpeed = WindSpeed;
LinearModels.FST = FST;
LinearModels.Servo = Servo;
LinearModels.DISCON = DISCON;
% Save for future use
if SaveFlag
save(LinModelFile, 'P', 'P_full', 'UMat', 'SS_Ops', 'SS_Ops_full', 'WindSpeed', 'FST', 'Servo', 'DISCON');
end
end