From a80480f0f2c6b7981297e62a4878a4515148f1ad Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Fri, 28 Oct 2022 13:43:26 +0200 Subject: [PATCH] [Tests] Improve unet / vae tests (#1018) * improve tests * up * finish * upload * add init * up * finish vae * finish * reduce loading time with device_map * remove device_map from CPU * uP --- setup.py | 2 + src/diffusers/dependency_versions_table.py | 1 + src/diffusers/utils/__init__.py | 2 +- tests/models/__init__.py | 0 tests/{ => models}/test_models_unet_1d.py | 2 +- tests/{ => models}/test_models_unet_2d.py | 248 +++++++++++++---- tests/models/test_models_vae.py | 303 +++++++++++++++++++++ tests/{ => models}/test_models_vae_flax.py | 2 +- tests/{ => models}/test_models_vq.py | 2 +- tests/test_models_vae.py | 132 --------- 10 files changed, 506 insertions(+), 188 deletions(-) create mode 100644 tests/models/__init__.py rename tests/{ => models}/test_models_unet_1d.py (98%) rename tests/{ => models}/test_models_unet_2d.py (60%) create mode 100644 tests/models/test_models_vae.py rename tests/{ => models}/test_models_vae_flax.py (94%) rename tests/{ => models}/test_models_vq.py (98%) delete mode 100644 tests/test_models_vae.py diff --git a/setup.py b/setup.py index b4c1613ba115..6f0742e83ee5 100644 --- a/setup.py +++ b/setup.py @@ -94,6 +94,7 @@ "modelcards>=0.1.4", "numpy", "onnxruntime", + "parameterized", "pytest", "pytest-timeout", "pytest-xdist", @@ -181,6 +182,7 @@ def run(self): "accelerate", "datasets", "onnxruntime", + "parameterized", "pytest", "pytest-timeout", "pytest-xdist", diff --git a/src/diffusers/dependency_versions_table.py b/src/diffusers/dependency_versions_table.py index 8b10d70a26f7..64e55e932c1c 100644 --- a/src/diffusers/dependency_versions_table.py +++ b/src/diffusers/dependency_versions_table.py @@ -18,6 +18,7 @@ "modelcards": "modelcards>=0.1.4", "numpy": "numpy", "onnxruntime": "onnxruntime", + "parameterized": "parameterized", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", diff --git a/src/diffusers/utils/__init__.py b/src/diffusers/utils/__init__.py index 51798e2ad765..ae00c1cf6a10 100644 --- a/src/diffusers/utils/__init__.py +++ b/src/diffusers/utils/__init__.py @@ -40,7 +40,7 @@ if is_torch_available(): - from .testing_utils import floats_tensor, load_image, parse_flag_from_env, slow, torch_device + from .testing_utils import floats_tensor, load_image, parse_flag_from_env, require_torch_gpu, slow, torch_device logger = get_logger(__name__) diff --git a/tests/models/__init__.py b/tests/models/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/tests/test_models_unet_1d.py b/tests/models/test_models_unet_1d.py similarity index 98% rename from tests/test_models_unet_1d.py rename to tests/models/test_models_unet_1d.py index c274ce419211..286c7525e2ca 100644 --- a/tests/test_models_unet_1d.py +++ b/tests/models/test_models_unet_1d.py @@ -28,7 +28,7 @@ class UnetModel1DTests(unittest.TestCase): @slow def test_unet_1d_maestro(self): model_id = "harmonai/maestro-150k" - model = UNet1DModel.from_pretrained(model_id, subfolder="unet") + model = UNet1DModel.from_pretrained(model_id, subfolder="unet", device_map="auto") model.to(torch_device) sample_size = 65536 diff --git a/tests/test_models_unet_2d.py b/tests/models/test_models_unet_2d.py similarity index 60% rename from tests/test_models_unet_2d.py rename to tests/models/test_models_unet_2d.py index 393d47887e6d..b2aa90b236d0 100644 --- a/tests/test_models_unet_2d.py +++ b/tests/models/test_models_unet_2d.py @@ -21,9 +21,10 @@ import torch from diffusers import UNet2DConditionModel, UNet2DModel -from diffusers.utils import floats_tensor, slow, torch_device +from diffusers.utils import floats_tensor, require_torch_gpu, slow, torch_device +from parameterized import parameterized -from .test_modeling_common import ModelTesterMixin +from ..test_modeling_common import ModelTesterMixin torch.backends.cuda.matmul.allow_tf32 = False @@ -66,28 +67,6 @@ def prepare_init_args_and_inputs_for_common(self): return init_dict, inputs_dict -# TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints -# def test_output_pretrained(self): -# model = UNet2DModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet") -# model.eval() -# -# torch.manual_seed(0) -# if torch.cuda.is_available(): -# torch.cuda.manual_seed_all(0) -# -# noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) -# time_step = torch.tensor([10]) -# -# with torch.no_grad(): -# output = model(noise, time_step).sample -# -# output_slice = output[0, -1, -3:, -3:].flatten() -# fmt: off -# expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053]) -# fmt: on -# self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) - - class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @@ -170,7 +149,9 @@ def test_from_pretrained_accelerate_wont_change_results(self): torch.cuda.empty_cache() gc.collect() - model_normal_load, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) + model_normal_load, _ = UNet2DModel.from_pretrained( + "fusing/unet-ldm-dummy-update", output_loading_info=True, device_map="auto" + ) model_normal_load.to(torch_device) model_normal_load.eval() arr_normal_load = model_normal_load(noise, time_step)["sample"] @@ -309,31 +290,6 @@ def test_gradient_checkpointing(self): self.assertTrue(torch.allclose(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) -# TODO(Patrick) - Re-add this test after having cleaned up LDM -# def test_output_pretrained_spatial_transformer(self): -# model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial") -# model.eval() -# -# torch.manual_seed(0) -# if torch.cuda.is_available(): -# torch.cuda.manual_seed_all(0) -# -# noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) -# context = torch.ones((1, 16, 64), dtype=torch.float32) -# time_step = torch.tensor([10] * noise.shape[0]) -# -# with torch.no_grad(): -# output = model(noise, time_step, context=context) -# -# output_slice = output[0, -1, -3:, -3:].flatten() -# fmt: off -# expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890]) -# fmt: on -# -# self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) -# - - class NCSNppModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @@ -383,7 +339,9 @@ def prepare_init_args_and_inputs_for_common(self): @slow def test_from_pretrained_hub(self): - model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) + model, loading_info = UNet2DModel.from_pretrained( + "google/ncsnpp-celebahq-256", output_loading_info=True, device_map="auto" + ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) @@ -397,7 +355,7 @@ def test_from_pretrained_hub(self): @slow def test_output_pretrained_ve_mid(self): - model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") + model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", device_map="auto") model.to(torch_device) torch.manual_seed(0) @@ -449,3 +407,189 @@ def test_output_pretrained_ve_large(self): def test_forward_with_norm_groups(self): # not required for this model pass + + +@slow +class UNet2DConditionModelIntegrationTests(unittest.TestCase): + def tearDown(self): + # clean up the VRAM after each test + super().tearDown() + gc.collect() + torch.cuda.empty_cache() + + def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): + batch_size, channels, height, width = shape + generator = torch.Generator(device=torch_device).manual_seed(seed) + dtype = torch.float16 if fp16 else torch.float32 + image = torch.randn(batch_size, channels, height, width, device=torch_device, generator=generator, dtype=dtype) + + return image + + def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): + revision = "fp16" if fp16 else None + torch_dtype = torch.float16 if fp16 else torch.float32 + + model = UNet2DConditionModel.from_pretrained( + model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision, device_map="auto" + ) + model.to(torch_device).eval() + + return model + + def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): + generator = torch.Generator(device=torch_device).manual_seed(seed) + dtype = torch.float16 if fp16 else torch.float32 + return torch.randn(shape, device=torch_device, generator=generator, dtype=dtype) + + @parameterized.expand( + [ + # fmt: off + [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], + [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], + [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], + [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], + # fmt: on + ] + ) + def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") + latents = self.get_latents(seed) + encoder_hidden_states = self.get_encoder_hidden_states(seed) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == latents.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], + [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], + [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], + [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], + # fmt: on + ] + ) + @require_torch_gpu + def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) + latents = self.get_latents(seed, fp16=True) + encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == latents.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], + [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], + [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], + [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], + # fmt: on + ] + ) + def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") + latents = self.get_latents(seed) + encoder_hidden_states = self.get_encoder_hidden_states(seed) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == latents.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], + [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], + [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], + [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], + # fmt: on + ] + ) + @require_torch_gpu + def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) + latents = self.get_latents(seed, fp16=True) + encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == latents.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], + [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], + [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], + [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], + # fmt: on + ] + ) + def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") + latents = self.get_latents(seed, shape=(4, 9, 64, 64)) + encoder_hidden_states = self.get_encoder_hidden_states(seed) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == (4, 4, 64, 64) + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], + [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], + [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], + [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], + # fmt: on + ] + ) + @require_torch_gpu + def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): + model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) + latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) + encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) + + with torch.no_grad(): + sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample + + assert sample.shape == (4, 4, 64, 64) + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) diff --git a/tests/models/test_models_vae.py b/tests/models/test_models_vae.py new file mode 100644 index 000000000000..65fe81fd3379 --- /dev/null +++ b/tests/models/test_models_vae.py @@ -0,0 +1,303 @@ +# coding=utf-8 +# Copyright 2022 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import gc +import unittest + +import torch + +from diffusers import AutoencoderKL +from diffusers.modeling_utils import ModelMixin +from diffusers.utils import floats_tensor, require_torch_gpu, slow, torch_device +from parameterized import parameterized + +from ..test_modeling_common import ModelTesterMixin + + +torch.backends.cuda.matmul.allow_tf32 = False + + +class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase): + model_class = AutoencoderKL + + @property + def dummy_input(self): + batch_size = 4 + num_channels = 3 + sizes = (32, 32) + + image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) + + return {"sample": image} + + @property + def input_shape(self): + return (3, 32, 32) + + @property + def output_shape(self): + return (3, 32, 32) + + def prepare_init_args_and_inputs_for_common(self): + init_dict = { + "block_out_channels": [32, 64], + "in_channels": 3, + "out_channels": 3, + "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], + "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], + "latent_channels": 4, + } + inputs_dict = self.dummy_input + return init_dict, inputs_dict + + def test_forward_signature(self): + pass + + def test_training(self): + pass + + def test_from_pretrained_hub(self): + model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) + self.assertIsNotNone(model) + self.assertEqual(len(loading_info["missing_keys"]), 0) + + model.to(torch_device) + image = model(**self.dummy_input) + + assert image is not None, "Make sure output is not None" + + def test_output_pretrained(self): + model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") + model = model.to(torch_device) + model.eval() + + # One-time warmup pass (see #372) + if torch_device == "mps" and isinstance(model, ModelMixin): + image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) + image = image.to(torch_device) + with torch.no_grad(): + _ = model(image, sample_posterior=True).sample + generator = torch.manual_seed(0) + else: + generator = torch.Generator(device=torch_device).manual_seed(0) + + image = torch.randn( + 1, + model.config.in_channels, + model.config.sample_size, + model.config.sample_size, + generator=torch.manual_seed(0), + ) + image = image.to(torch_device) + with torch.no_grad(): + output = model(image, sample_posterior=True, generator=generator).sample + + output_slice = output[0, -1, -3:, -3:].flatten().cpu() + + # Since the VAE Gaussian prior's generator is seeded on the appropriate device, + # the expected output slices are not the same for CPU and GPU. + if torch_device == "mps": + expected_output_slice = torch.tensor( + [ + -4.0078e-01, + -3.8323e-04, + -1.2681e-01, + -1.1462e-01, + 2.0095e-01, + 1.0893e-01, + -8.8247e-02, + -3.0361e-01, + -9.8644e-03, + ] + ) + elif torch_device == "cpu": + expected_output_slice = torch.tensor( + [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] + ) + else: + expected_output_slice = torch.tensor( + [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] + ) + + self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) + + +@slow +class AutoencoderKLIntegrationTests(unittest.TestCase): + def tearDown(self): + # clean up the VRAM after each test + super().tearDown() + gc.collect() + torch.cuda.empty_cache() + + def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): + batch_size, channels, height, width = shape + generator = torch.Generator(device=torch_device).manual_seed(seed) + dtype = torch.float16 if fp16 else torch.float32 + image = torch.randn(batch_size, channels, height, width, device=torch_device, generator=generator, dtype=dtype) + + return image + + def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): + revision = "fp16" if fp16 else None + torch_dtype = torch.float16 if fp16 else torch.float32 + + model = AutoencoderKL.from_pretrained( + model_id, subfolder="vae", torch_dtype=torch_dtype, revision=revision, device_map="auto" + ) + model.to(torch_device).eval() + + return model + + def get_generator(self, seed=0): + return torch.Generator(device=torch_device).manual_seed(seed) + + @parameterized.expand( + [ + # fmt: off + [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]], + [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]], + # fmt: on + ] + ) + def test_stable_diffusion(self, seed, expected_slice): + model = self.get_sd_vae_model() + image = self.get_sd_image(seed) + generator = self.get_generator(seed) + + with torch.no_grad(): + sample = model(image, generator=generator, sample_posterior=True).sample + + assert sample.shape == image.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], + [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], + # fmt: on + ] + ) + @require_torch_gpu + def test_stable_diffusion_fp16(self, seed, expected_slice): + model = self.get_sd_vae_model(fp16=True) + image = self.get_sd_image(seed, fp16=True) + generator = self.get_generator(seed) + + with torch.no_grad(): + sample = model(image, generator=generator, sample_posterior=True).sample + + assert sample.shape == image.shape + + output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814]], + [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085]], + # fmt: on + ] + ) + def test_stable_diffusion_mode(self, seed, expected_slice): + model = self.get_sd_vae_model() + image = self.get_sd_image(seed) + + with torch.no_grad(): + sample = model(image).sample + + assert sample.shape == image.shape + + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], + [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], + # fmt: on + ] + ) + @require_torch_gpu + def test_stable_diffusion_decode(self, seed, expected_slice): + model = self.get_sd_vae_model() + encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) + + with torch.no_grad(): + sample = model.decode(encoding).sample + + assert list(sample.shape) == [3, 3, 512, 512] + + output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], + [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], + # fmt: on + ] + ) + def test_stable_diffusion_decode_fp16(self, seed, expected_slice): + model = self.get_sd_vae_model(fp16=True) + encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) + + with torch.no_grad(): + sample = model.decode(encoding).sample + + assert list(sample.shape) == [3, 3, 512, 512] + + output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) + + @parameterized.expand( + [ + # fmt: off + [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], + [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], + # fmt: on + ] + ) + def test_stable_diffusion_encode_sample(self, seed, expected_slice): + model = self.get_sd_vae_model() + image = self.get_sd_image(seed) + generator = self.get_generator(seed) + + with torch.no_grad(): + dist = model.encode(image).latent_dist + sample = dist.sample(generator=generator) + + assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] + + output_slice = sample[0, -1, -3:, -3:].flatten().cpu() + expected_output_slice = torch.tensor(expected_slice) + + assert torch.allclose(output_slice, expected_output_slice, atol=1e-4) diff --git a/tests/test_models_vae_flax.py b/tests/models/test_models_vae_flax.py similarity index 94% rename from tests/test_models_vae_flax.py rename to tests/models/test_models_vae_flax.py index e5c56b61a5a4..8fedb85eccfc 100644 --- a/tests/test_models_vae_flax.py +++ b/tests/models/test_models_vae_flax.py @@ -4,7 +4,7 @@ from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax -from .test_modeling_common_flax import FlaxModelTesterMixin +from ..test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): diff --git a/tests/test_models_vq.py b/tests/models/test_models_vq.py similarity index 98% rename from tests/test_models_vq.py rename to tests/models/test_models_vq.py index 9a2094d46cb4..f58e90469885 100644 --- a/tests/test_models_vq.py +++ b/tests/models/test_models_vq.py @@ -20,7 +20,7 @@ from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device -from .test_modeling_common import ModelTesterMixin +from ..test_modeling_common import ModelTesterMixin torch.backends.cuda.matmul.allow_tf32 = False diff --git a/tests/test_models_vae.py b/tests/test_models_vae.py deleted file mode 100644 index 49610f848364..000000000000 --- a/tests/test_models_vae.py +++ /dev/null @@ -1,132 +0,0 @@ -# coding=utf-8 -# Copyright 2022 HuggingFace Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import torch - -from diffusers import AutoencoderKL -from diffusers.modeling_utils import ModelMixin -from diffusers.utils import floats_tensor, torch_device - -from .test_modeling_common import ModelTesterMixin - - -torch.backends.cuda.matmul.allow_tf32 = False - - -class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase): - model_class = AutoencoderKL - - @property - def dummy_input(self): - batch_size = 4 - num_channels = 3 - sizes = (32, 32) - - image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) - - return {"sample": image} - - @property - def input_shape(self): - return (3, 32, 32) - - @property - def output_shape(self): - return (3, 32, 32) - - def prepare_init_args_and_inputs_for_common(self): - init_dict = { - "block_out_channels": [32, 64], - "in_channels": 3, - "out_channels": 3, - "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], - "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], - "latent_channels": 4, - } - inputs_dict = self.dummy_input - return init_dict, inputs_dict - - def test_forward_signature(self): - pass - - def test_training(self): - pass - - def test_from_pretrained_hub(self): - model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) - self.assertIsNotNone(model) - self.assertEqual(len(loading_info["missing_keys"]), 0) - - model.to(torch_device) - image = model(**self.dummy_input) - - assert image is not None, "Make sure output is not None" - - def test_output_pretrained(self): - model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") - model = model.to(torch_device) - model.eval() - - # One-time warmup pass (see #372) - if torch_device == "mps" and isinstance(model, ModelMixin): - image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) - image = image.to(torch_device) - with torch.no_grad(): - _ = model(image, sample_posterior=True).sample - generator = torch.manual_seed(0) - else: - generator = torch.Generator(device=torch_device).manual_seed(0) - - image = torch.randn( - 1, - model.config.in_channels, - model.config.sample_size, - model.config.sample_size, - generator=torch.manual_seed(0), - ) - image = image.to(torch_device) - with torch.no_grad(): - output = model(image, sample_posterior=True, generator=generator).sample - - output_slice = output[0, -1, -3:, -3:].flatten().cpu() - - # Since the VAE Gaussian prior's generator is seeded on the appropriate device, - # the expected output slices are not the same for CPU and GPU. - if torch_device == "mps": - expected_output_slice = torch.tensor( - [ - -4.0078e-01, - -3.8323e-04, - -1.2681e-01, - -1.1462e-01, - 2.0095e-01, - 1.0893e-01, - -8.8247e-02, - -3.0361e-01, - -9.8644e-03, - ] - ) - elif torch_device == "cpu": - expected_output_slice = torch.tensor( - [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] - ) - else: - expected_output_slice = torch.tensor( - [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] - ) - - self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))