-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathfinetune_hardhat.py
103 lines (75 loc) · 3.38 KB
/
finetune_hardhat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
""" Example on how to finetune on the HardHat dataset
using custom layers. This script assume the dataset is already download
on your computer in raw and Tensorflow Object detection csv format.
Please, for more information, checkout the following notebooks:
- DETR : How to setup a custom dataset
"""
import argparse
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import time
import os
from detr_tf.data import load_tfcsv_dataset
from detr_tf.networks.detr import get_detr_model
from detr_tf.optimizers import setup_optimizers
from detr_tf.logger.training_logging import train_log, valid_log
from detr_tf.loss.loss import get_losses
from detr_tf.inference import numpy_bbox_to_image
from detr_tf.training_config import TrainingConfig, training_config_parser
from detr_tf import training
try:
# Should be optional if --log is not set
import wandb
except:
wandb = None
import time
def build_model(config):
""" Build the model with the pretrained weights
and add new layers to finetune
"""
# Load the pretrained model with new heads at the top
# 3 class : background head and helmet (we exclude here person from the dataset)
detr = get_detr_model(config, include_top=False, nb_class=3, weights="detr", num_decoder_layers=6, num_encoder_layers=6)
detr.summary()
return detr
def run_finetuning(config):
# Load the model with the new layers to finetune
detr = build_model(config)
# Load the training and validation dataset and exclude the person class
train_dt, class_names = load_tfcsv_dataset(
config, config.batch_size, augmentation=True, exclude=["person"], ann_file="train/_annotations.csv", img_dir="train")
valid_dt, _ = load_tfcsv_dataset(
config, 4, augmentation=False, exclude=["person"], ann_file="test/_annotations.csv", img_dir="test")
# Train/finetune the transformers only
config.train_backbone = tf.Variable(False)
config.train_transformers = tf.Variable(False)
config.train_nlayers = tf.Variable(True)
# Learning rate (NOTE: The transformers and the backbone are NOT trained with)
# a 0 learning rate. They're not trained, but we set the LR to 0 just so that it is clear
# in the log that both are not trained at the begining
config.backbone_lr = tf.Variable(0.0)
config.transformers_lr = tf.Variable(0.0)
config.nlayers_lr = tf.Variable(1e-3)
# Setup the optimziers and the trainable variables
optimzers = setup_optimizers(detr, config)
# Run the training for 180 epochs
for epoch_nb in range(180):
if epoch_nb > 0:
# After the first epoch, we finetune the transformers and the new layers
config.train_transformers.assign(True)
config.transformers_lr.assign(1e-4)
config.nlayers_lr.assign(1e-3)
training.eval(detr, valid_dt, config, class_names, evaluation_step=100)
training.fit(detr, train_dt, optimzers, config, epoch_nb, class_names)
if __name__ == "__main__":
physical_devices = tf.config.list_physical_devices('GPU')
if len(physical_devices) == 1:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
config = TrainingConfig()
args = training_config_parser().parse_args()
config.update_from_args(args)
if config.log:
wandb.init(project="detr-tensorflow", reinit=True)
# Run training
run_finetuning(config)