-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
676 lines (552 loc) · 24.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import argparse
import math
import random
import os
import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
from random_walk_loss import RWLoss
try:
import wandb
except ImportError:
wandb = None
from model import Generator, Discriminator
import os
from datetime import datetime
# from networksRW_pruned import RWLoss
from torchvision import models
import random
# from dataset import MultiResolutionDataset
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from non_leaking import augment
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def set_grad_none(model, targets):
for n, p in model.named_parameters():
if n in targets:
p.grad = None
def train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device):
dataloader = loader
loader = sample_data(loader)
pbar = range(args.iter)
if get_rank() == 0:
if not args.no_pbar:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
ada_augment = torch.tensor([0.0, 0.0], device=device)
ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
ada_aug_step = args.ada_target / args.ada_length
r_t_stat = 0
sample_z = torch.randn(args.n_sample, args.latent, device=device)
# Initialize RW loss here.
if args.use_RWLoss:
rw_loss_func = RWLoss(tau=args.RW_tau,
alpha=args.RW_alpha,
binary=args.RW_use_BCE,
proto_method=args.RW_proto_method,
running_mean_factor=args.RW_proto_rm,
feature_extractor=getattr(models, args.RW_feature_extractor)(pretrained=True),
opt=args
)
criterion_classif = nn.NLLLoss().to(device=device)
get_logits = args.use_RWLoss or args.use_KL
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
batch_input = next(loader)
real_img = batch_input['img'].to(device)
style_target = batch_input['art_style'].long().to(device)
real_img = real_img.to(device)
requires_grad(generator, False)
requires_grad(discriminator, True)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
real_img_aug, _ = augment(real_img, ada_aug_p)
fake_img, _ = augment(fake_img, ada_aug_p)
else:
real_img_aug = real_img
fake_pred = discriminator(fake_img, return_logits=False)
if get_logits:
real_pred, style_logits_real = discriminator(real_img_aug, return_logits=True)
style_logits_prob = F.log_softmax(style_logits_real)
classif_loss = criterion_classif(style_logits_prob, style_target)
else:
real_pred = discriminator(real_img_aug, return_logits=False)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict["d"] = d_loss
if get_logits:
loss_dict["classif_loss"] = classif_loss
d_loss += classif_loss
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
if args.augment and args.augment_p == 0:
ada_augment_data = torch.tensor(
(torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
)
ada_augment += reduce_sum(ada_augment_data)
if ada_augment[1] > 255:
pred_signs, n_pred = ada_augment.tolist()
r_t_stat = pred_signs / n_pred
if r_t_stat > args.ada_target:
sign = 1
else:
sign = -1
ada_aug_p += sign * ada_aug_step * n_pred
ada_aug_p = min(1, max(0, ada_aug_p))
ada_augment.mul_(0)
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img, return_logits=False)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict["r1"] = r1_loss
requires_grad(generator, True)
requires_grad(discriminator, False)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
fake_img, _ = augment(fake_img, ada_aug_p)
if get_logits:
op = discriminator(fake_img, return_logits=args.use_KL, return_features=args.use_RWLoss)
if len(op) == 3:
fake_pred, style_logits_fake, style_features_fake = op
elif args.use_KL:
fake_pred, style_logits_fake = op
elif args.use_RWLoss:
fake_pred, style_features_fake = op
if args.use_KL:
# computeKL loss
style_logits_fake_probs = F.log_softmax(style_logits_fake)
loss_KL = -args.KL_weight * (style_logits_fake_probs / style_logits_fake_probs.size(1)).mean()
if args.use_RWLoss:
# compute RW loss
loss_RW = args.RW_weight * rw_loss_func(features=style_features_fake,
labels=style_target,
discriminator=discriminator,
mode='creative',
dataset=dataloader.dataset,
key='pruned_style_class',
module_kwargs={'return_logits':False,
'return_features':True}
)
else:
fake_pred = discriminator(fake_img)
g_loss = g_nonsaturating_loss(fake_pred)
loss_dict["g"] = g_loss
if args.use_KL:
loss_dict["KL_loss"] = loss_KL
g_loss += loss_KL
# Compute RW loss here.
if args.use_RWLoss:
loss_dict["RW_loss"] = loss_RW
g_loss += loss_RW
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
noise = mixing_noise(path_batch_size, args.latent, args.mixing, device)
fake_img, latents = generator(noise, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict["path"] = path_loss
loss_dict["path_length"] = path_lengths.mean()
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
r1_val = loss_reduced["r1"].mean().item()
path_loss_val = loss_reduced["path"].mean().item()
real_score_val = loss_reduced["real_score"].mean().item()
fake_score_val = loss_reduced["fake_score"].mean().item()
path_length_val = loss_reduced["path_length"].mean().item()
if get_logits:
classf_loss_val = loss_reduced["classif_loss"].mean().item()
if args.use_KL:
KL_loss_val = loss_reduced["KL_loss"].mean().item()
## Condition for RW loss.
if args.use_RWLoss:
RW_loss_val = loss_reduced["RW_loss"].mean().item()
if get_rank() == 0:
description = (f'Iteration: {i}; '
f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
f"augment: {ada_aug_p:.4f} ")
if get_logits:
description += f"classf_loss: {classf_loss_val:0.2f}; "
if args.use_KL:
description += f"KL: {KL_loss_val:.2f}; "
## Condition for RW loss
if args.use_RWLoss:
description += f"RW: {RW_loss_val:.2f}; "
if args.no_pbar:
if (i + 1) % 1000 == 0 or i==0:
print(description)
else:
pbar.set_description(description)
if wandb and args.wandb:
log_dict = {
"Generator": g_loss_val,
"Discriminator": d_loss_val,
"Augment": ada_aug_p,
"Rt": r_t_stat,
"R1": r1_val,
"Path Length Regularization": path_loss_val,
"Mean Path Length": mean_path_length,
"Real Score": real_score_val,
"Fake Score": fake_score_val,
"Path Length": path_length_val,
}
if get_logits:
log_dict['classification_loss'] = classf_loss_val
if args.use_KL:
log_dict['KL loss'] = KL_loss_val
## add RW log here
if args.use_RWLoss:
log_dict['RW loss'] = RW_loss_val
wandb.log(log_dict)
if i % 1000 == 0:
with torch.no_grad():
g_ema.eval()
sample, _ = g_ema([sample_z])
utils.save_image(
sample,
os.path.join(args.checkpoint_path, f"sample/{str(i).zfill(6)}.png"),
nrow=int(args.n_sample ** 0.5),
normalize=True,
range=(-1, 1),
)
if i % 5000 == 0:
torch.save(
{
"g": g_module.state_dict(),
"d": d_module.state_dict(),
"g_ema": g_ema.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
"args": args,
"ada_aug_p": ada_aug_p,
},
os.path.join(args.checkpoint_path, f"checkpoint/{str(i).zfill(6)}.pt"),
)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="StyleGAN2 trainer")
parser.add_argument("--path", type=str, help="path to the lmdb dataset")
parser.add_argument(
"--iter", type=int, default=800000, help="total training iterations"
)
parser.add_argument(
"--batch", type=int, default=16, help="batch sizes for each gpus"
)
parser.add_argument(
"--n_sample",
type=int,
default=64,
help="number of the samples generated during training",
)
parser.add_argument(
"--size", type=int, default=256, help="image sizes for the model"
)
parser.add_argument(
"--r1", type=float, default=10, help="weight of the r1 regularization"
)
parser.add_argument(
"--path_regularize",
type=float,
default=2,
help="weight of the path length regularization",
)
parser.add_argument(
"--path_batch_shrink",
type=int,
default=2,
help="batch size reducing factor for the path length regularization (reduce memory consumption)",
)
parser.add_argument(
"--d_reg_every",
type=int,
default=16,
help="interval of the applying r1 regularization",
)
parser.add_argument(
"--g_reg_every",
type=int,
default=4,
help="interval of the applying path length regularization",
)
parser.add_argument(
"--mixing", type=float, default=0.9, help="probability of latent code mixing"
)
parser.add_argument(
"--ckpt",
type=str,
default=None,
help="path to the checkpoints to resume training",
)
parser.add_argument("--lr", type=float, default=0.002, help="learning rate")
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier factor for the model. config-f = 2, else = 1",
)
parser.add_argument(
"--wandb", action="store_true", help="use weights and biases logging"
)
parser.add_argument(
"--local_rank", type=int, default=0, help="local rank for distributed training"
)
parser.add_argument(
"--augment", action="store_true", help="apply non leaking augmentation"
)
parser.add_argument(
"--augment_p",
type=float,
default=0,
help="probability of applying augmentation. 0 = use adaptive augmentation",
)
parser.add_argument(
"--ada_target",
type=float,
default=0.6,
help="target augmentation probability for adaptive augmentation",
)
parser.add_argument(
"--ada_length",
type=int,
default=500 * 1000,
help="target duraing to reach augmentation probability for adaptive augmentation",
)
parser.add_argument(
"--ada_every",
type=int,
default=256,
help="probability update interval of the adaptive augmentation",
)
parser.add_argument('--data_aug', type=str, default='matlab', choices=['matlab', 'simclr'], help='matlab add noise file or simclr',)
parser.add_argument('--num_workers', type=int, default=8, help='num workers for dataloader')
parser.add_argument('--use_KL', action='store_true', help='use KL loss for the generator')
parser.add_argument('--KL_weight', type=float, default=1.0, help='weight of KL loss for the generator')
parser.add_argument('--no_style', action='store_true', help='dont use style classification')
parser.add_argument('--no_genre', action='store_true', help='dont use genre classification')
parser.add_argument('--no_artist', action='store_true', help='dont use genre classification')
parser.add_argument('--creativity_label', type=str, default='style_genre_artist' ,help='use CAN Loss loss for the generator')
parser.add_argument('--name_suffix', type=str, default='test' ,help='name_suffix of the checkpoint folder')
parser.add_argument('--checkpoint_folder', type=str, default='./' ,help='checkpoint folder')
parser.add_argument('--batch_mult', type=int, default=1 ,help='batch size multiplier')
parser.add_argument('--no_pbar', action='store_true')
## Random Walk params
parser.add_argument('--use_RWLoss', action='store_true', help='use random walk loss')
parser.add_argument('--RW_tau', type=int, default=3, help='number of hops between points')
parser.add_argument('--RW_alpha', type=int, default=0.7, help='decay factor to calculate RW loss')
parser.add_argument('--RW_use_BCE', action='store_true', help='whether to use binary cross entropy or not')
parser.add_argument('--RW_weight', type=float, default=1.0, help='weight to use for RW loss')
parser.add_argument('--RW_proto_method', type=str, default='random_once', help='weight to use for RW loss allowed(random_once, random_all, nearest_mean_once, nearest_mean_once_diverse)')
parser.add_argument('--RW_proto_rm', type=float, default=None, help='running mean factor while proto_method is random_all')
parser.add_argument('--RW_grad_proto', action='store_true', help='whether to use gradients of discriminator while calculating the protos') ## Not used
parser.add_argument('--RW_feature_extractor', type=str, default='resnet18', help='torchvision model to be used to extract features useful only in case of nearest_mean') ## Good enough
parser.add_argument('--classify_creative', action='store_true', help='add additional classification for creative vs imitative mode.')
parser.add_argument('--KL_creative', action='store_true', help='use KL only in creative mode.')
parser.add_argument('--normalize_protos_scale', default=None, type=float, help='whether to L2-normalize-scale prototypes or not')
parser.add_argument('--only_creative', action='store_true', help='genreator only in creative mode')
parser.add_argument('--only_imitative', action='store_true', help='generator only in imitative mode')
parser.add_argument('--verbose', action='store_true', help='print logs')
parser.add_argument('--add_mode', action='store_true', help='add modes to noise.')
parser.add_argument('--KL_mode', action='store_true', help='in imitative mode KL loss is negated.')
parser.add_argument('--disc_imitative', action='store_true', help='imitative mode for real data.')
parser.add_argument('--lr_scale', type=float, default=1.0, help='imitative mode for real data.')
parser.add_argument('--vanilla', action='store_true', help='uses vanilla styleGAN')
args = parser.parse_args()
print(args)
now = datetime.now()
ff_n = now.strftime("%m-%d-%y-%H-%M-%S")
checkpoint_path = os.path.join(args.checkpoint_folder, args.name_suffix, ff_n)
os.makedirs(checkpoint_path, exist_ok=True)
os.makedirs(os.path.join(checkpoint_path, 'sample'), exist_ok=True)
os.makedirs(os.path.join(checkpoint_path, 'checkpoint'), exist_ok=True)
args.checkpoint_path = checkpoint_path
print("Checkpoint path: ", checkpoint_path)
with open(os.path.join(checkpoint_path, 'args.txt'), 'w') as f:
f.write(str(args))
from wikiart_dataset_pruned import wikiart_dataset_HR
dataset = wikiart_dataset_HR(args)
# import pdb; pdb.set_trace();
dataset.resolution = args.size
n_discs = []
if not args.vanilla:
n_discs.append(args.n_styles)
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
print("WORLD_SIZE", os.environ["WORLD_SIZE"])
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
generator = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier, ndiscs=n_discs
).to(device)
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.ckpt is not None:
print("load model:", args.ckpt)
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
try:
ckpt_name = os.path.basename(args.ckpt)
args.start_iter = int(os.path.splitext(ckpt_name)[0])
except ValueError:
pass
generator.load_state_dict(ckpt["g"])
discriminator.load_state_dict(ckpt["d"])
g_ema.load_state_dict(ckpt["g_ema"])
g_optim.load_state_dict(ckpt["g_optim"])
d_optim.load_state_dict(ckpt["d_optim"])
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
find_unused_parameters=True
)
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
# dataset = MultiResolutionDataset(args.path, transform, args.size)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
if get_rank() == 0 and wandb is not None and args.wandb:
wandb.init(project=f"stylegan2-{args.name_suffix}")
train(args, loader, generator, discriminator, g_optim, d_optim, g_ema, device)