-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
84 lines (68 loc) · 2.22 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import torch
from torchvision import utils
from model import Generator
from tqdm import tqdm
def generate(args, g_ema, device, mean_latent):
with torch.no_grad():
g_ema.eval()
for i in tqdm(range(args.pics)):
sample_z = torch.randn(args.sample, args.latent, device=device)
sample, _ = g_ema(
[sample_z], truncation=args.truncation, truncation_latent=mean_latent
)
utils.save_image(
sample,
f"sample/{str(i).zfill(6)}.png",
nrow=1,
normalize=True,
range=(-1, 1),
)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="Generate samples from the generator")
parser.add_argument(
"--size", type=int, default=1024, help="output image size of the generator"
)
parser.add_argument(
"--sample",
type=int,
default=1,
help="number of samples to be generated for each image",
)
parser.add_argument(
"--pics", type=int, default=20, help="number of images to be generated"
)
parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
parser.add_argument(
"--truncation_mean",
type=int,
default=4096,
help="number of vectors to calculate mean for the truncation",
)
parser.add_argument(
"--ckpt",
type=str,
default="stylegan2-ffhq-config-f.pt",
help="path to the model checkpoint",
)
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier of the generator. config-f = 2, else = 1",
)
args = parser.parse_args()
args.latent = 512
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
checkpoint = torch.load(args.ckpt)
g_ema.load_state_dict(checkpoint["g_ema"])
if args.truncation < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(args.truncation_mean)
else:
mean_latent = None
generate(args, g_ema, device, mean_latent)