-
Notifications
You must be signed in to change notification settings - Fork 0
/
fid.py
129 lines (97 loc) · 3.55 KB
/
fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import pickle
import torch
from torch import nn
import numpy as np
from scipy import linalg
from tqdm import tqdm
from model import Generator
from calc_inception import load_patched_inception_v3
@torch.no_grad()
def extract_feature_from_samples(
generator, inception, truncation, truncation_latent, batch_size, n_sample, device
):
n_batch = n_sample // batch_size
resid = n_sample - (n_batch * batch_size)
batch_sizes = [batch_size] * n_batch + [resid]
features = []
for batch in tqdm(batch_sizes):
latent = torch.randn(batch, 512, device=device)
img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent)
feat = inception(img)[0].view(img.shape[0], -1)
features.append(feat.to("cpu"))
features = torch.cat(features, 0)
return features
def calc_fid(sample_mean, sample_cov, real_mean, real_cov, eps=1e-6):
cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False)
if not np.isfinite(cov_sqrt).all():
print("product of cov matrices is singular")
offset = np.eye(sample_cov.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset))
if np.iscomplexobj(cov_sqrt):
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
m = np.max(np.abs(cov_sqrt.imag))
raise ValueError(f"Imaginary component {m}")
cov_sqrt = cov_sqrt.real
mean_diff = sample_mean - real_mean
mean_norm = mean_diff @ mean_diff
trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt)
fid = mean_norm + trace
return fid
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="Calculate FID scores")
parser.add_argument("--truncation", type=float, default=1, help="truncation factor")
parser.add_argument(
"--truncation_mean",
type=int,
default=4096,
help="number of samples to calculate mean for truncation",
)
parser.add_argument(
"--batch", type=int, default=64, help="batch size for the generator"
)
parser.add_argument(
"--n_sample",
type=int,
default=50000,
help="number of the samples for calculating FID",
)
parser.add_argument(
"--size", type=int, default=256, help="image sizes for generator"
)
parser.add_argument(
"--inception",
type=str,
default=None,
required=True,
help="path to precomputed inception embedding",
)
parser.add_argument(
"ckpt", metavar="CHECKPOINT", help="path to generator checkpoint"
)
args = parser.parse_args()
ckpt = torch.load(args.ckpt)
g = Generator(args.size, 512, 8).to(device)
g.load_state_dict(ckpt["g_ema"])
g = nn.DataParallel(g)
g.eval()
if args.truncation < 1:
with torch.no_grad():
mean_latent = g.mean_latent(args.truncation_mean)
else:
mean_latent = None
inception = nn.DataParallel(load_patched_inception_v3()).to(device)
inception.eval()
features = extract_feature_from_samples(
g, inception, args.truncation, mean_latent, args.batch, args.n_sample, device
).numpy()
print(f"extracted {features.shape[0]} features")
sample_mean = np.mean(features, 0)
sample_cov = np.cov(features, rowvar=False)
with open(args.inception, "rb") as f:
embeds = pickle.load(f)
real_mean = embeds["mean"]
real_cov = embeds["cov"]
fid = calc_fid(sample_mean, sample_cov, real_mean, real_cov)
print("fid:", fid)