-
Notifications
You must be signed in to change notification settings - Fork 189
/
Copy pathconv.py
96 lines (84 loc) · 4.45 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from network import Module
from activation import Relu
import numpy as np
from skimage.util import view_as_windows
import math
def convolve(image, kernel):
return np.matmul(image, kernel.reshape(math.prod(kernel.shape), 1)).copy()
def unroll_image(image, kernel_x, kernel_y):
unrolled = view_as_windows(image, (kernel_x, kernel_y))
x_size = (image.shape[0] - (kernel_x - 1))
y_size = (image.shape[1] - (kernel_y - 1))
rows = x_size * y_size
return unrolled.reshape(rows, kernel_x * kernel_y)
class Conv(Module):
def __init__(self, input_channels, output_channels, kernel_x, kernel_y, bias=True, activation=True, seed=0):
self.add_bias = bias
self.add_activation = activation
self.kernel_x = kernel_x
self.kernel_y = kernel_y
self.input_channels = input_channels
self.output_channels = output_channels
self.hidden = None
np.random.seed(seed)
k = math.sqrt(1 / (input_channels * (kernel_x + kernel_y)))
self.weights = np.random.rand(input_channels, output_channels, kernel_x, kernel_y) * (2 * k) - k
self.bias = np.ones(output_channels) * (2 * k) - k
self.activation = Relu()
super().__init__()
def forward(self, x):
self.prev_hidden = x.copy()
new_x = x.shape[1] - (self.kernel_x - 1)
new_y = x.shape[2] - (self.kernel_y - 1)
output = np.zeros((self.output_channels, new_x, new_y))
for channel in range(self.input_channels):
unrolled = unroll_image(x[channel, :], self.kernel_x, self.kernel_y)
for next_channel in range(self.output_channels):
kernel = self.weights[channel, next_channel, :]
mult = convolve(unrolled, kernel).reshape(new_x, new_y)
output[next_channel, :] += mult
output /= x.shape[0]
if self.add_bias:
for next_channel in range(self.output_channels):
output[next_channel, :] += self.bias[next_channel]
if self.add_activation:
output = self.activation.forward(output)
self.hidden = output.copy()
return output
def backward(self, grad, lr):
grad = grad.reshape(self.hidden.shape)
if self.add_activation:
grad = self.activation.backward(grad, lr, self.hidden)
_, grad_x, grad_y = grad.shape
new_grad = np.zeros(self.prev_hidden.shape)
# Kernel weight update
for channel in range(self.input_channels):
# With multi-channel output, you need to loop across the output grads to link to input channel kernels
# Each kernel gets a unique update
flat_input = unroll_image(self.prev_hidden[channel, :], grad_x, grad_y)
for next_channel in range(self.output_channels):
# Kernel update
channel_grad = grad[next_channel, :]
# Each parameter is linked to multiple output pixels.
# Dividing by the number of pixels ensures correct update size.
grad_norm = math.prod(channel_grad.shape)
k_grad = convolve(flat_input, channel_grad).reshape(self.kernel_x, self.kernel_y) / grad_norm
self.weights[channel, next_channel, :] -= k_grad * lr
# Bias update
if self.add_bias:
for next_channel in range(self.output_channels):
channel_grad = grad[next_channel, :]
self.bias[next_channel] -= np.mean(channel_grad) * lr
# Propagate grad to next layer
for next_channel in range(self.output_channels):
channel_grad = grad[next_channel, :]
padded_grad = np.pad(channel_grad, ((self.kernel_x - 1, self.kernel_x - 1), (self.kernel_y - 1, self.kernel_y - 1)))
flat_padded = unroll_image(padded_grad, self.kernel_x, self.kernel_y)
for channel in range(self.input_channels):
# Grad to lower layer
flipped_kernel = np.flip(self.weights[channel, next_channel, :], axis=[0, 1])
updated_grad = convolve(flat_padded, flipped_kernel).reshape(self.prev_hidden.shape[1], self.prev_hidden.shape[2])
# Since we're multiplying each input by multiple kernel values, reduce the gradient accordingly
# This will reduce the edges more than necessary (they contribute to fewer output values), but is simple to implement
new_grad[channel, :] += updated_grad / math.prod(flipped_kernel.shape)
return new_grad