forked from microsoft/table-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_scitsr.py
1911 lines (1581 loc) · 82.1 KB
/
process_scitsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Copyright (C) 2023 Microsoft Corporation
Script to process, edit, filter, and canonicalize SciTSR to align it with PubTables-1M.
We still need to verify that this script works correctly.
If you use this code in your published work, we request that you cite our papers
and table-transformer GitHub repo.
"""
import json
import os
from collections import defaultdict
import traceback
from difflib import SequenceMatcher
import argparse
import fitz
from fitz import Rect
from PIL import Image
import xml.etree.ElementTree as ET
from xml.dom import minidom
import editdistance
import numpy as np
from tqdm import tqdm
def adjust_bbox_coordinates(data, doc):
# Change bbox coordinates to be relative to PyMuPDF page.rect coordinate space
media_box = doc[0].mediabox
mat = doc[0].transformation_matrix
for cell in ['cells']:
if not 'bbox' in cell:
continue
bbox = list(Rect(cell['bbox']) * mat)
bbox = [bbox[0] + media_box[0],
bbox[1] - media_box[1],
bbox[2] + media_box[0],
bbox[3] - media_box[1]]
cell['bbox'] = bbox
def table_to_text(table_dict):
return ' '.join([cell['text_content'].strip() for cell in table_dict['cells']])
def align(page_string="", xml_string="", page_character_rewards=None, xml_character_rewards=None, match_reward=2,
space_match_reward=3, lowercase_match_reward=2, mismatch_penalty=-5,
page_new_gap_penalty=-2, xml_new_gap_penalty=-5, page_continue_gap_penalty=-0.01, xml_continue_gap_penalty=-0.1,
page_boundary_gap_reward=0.01, gap_not_after_space_penalty=-1,
score_only=False, gap_character='_'):
'''
Dynamic programming sequence alignment between two text strings; the first text string
is considered to come from the PDF document; the second text string is considered to
come from the XML document.
Traceback convention: -1 = up, 1 = left, 0 = diag up-left
'''
scores = np.zeros((len(page_string) + 1, len(xml_string) + 1))
pointers = np.zeros((len(page_string) + 1, len(xml_string) + 1))
# Initialize first column
for row_idx in range(1, len(page_string) + 1):
scores[row_idx, 0] = scores[row_idx - 1, 0] + page_boundary_gap_reward
pointers[row_idx, 0] = -1
# Initialize first row
for col_idx in range(1, len(xml_string) + 1):
#scores[0, col_idx] = scores[0, col_idx - 1] + 0
pointers[0, col_idx] = 1
for row_idx in range(1, len(page_string) + 1):
for col_idx in range(1, len(xml_string) + 1):
# Score if matching the characters
if page_string[row_idx - 1].lower() == xml_string[col_idx - 1].lower():
if page_string[row_idx - 1] == ' ':
reward = space_match_reward
elif page_string[row_idx - 1] == xml_string[col_idx - 1]:
reward = match_reward
else:
reward = lowercase_match_reward
if not page_character_rewards is None:
reward *= page_character_rewards[row_idx-1]
if not xml_character_rewards is None:
reward *= xml_character_rewards[col_idx-1]
diag_score = scores[row_idx - 1, col_idx - 1] + reward
else:
diag_score = scores[row_idx - 1, col_idx - 1] + mismatch_penalty
if pointers[row_idx, col_idx - 1] == 1:
same_row_score = scores[row_idx, col_idx - 1] + page_continue_gap_penalty
else:
same_row_score = scores[row_idx, col_idx - 1] + page_new_gap_penalty
if not xml_string[col_idx - 1] == ' ':
same_row_score += gap_not_after_space_penalty
if col_idx == len(xml_string):
same_col_score = scores[row_idx - 1, col_idx] + page_boundary_gap_reward
elif pointers[row_idx - 1, col_idx] == -1:
same_col_score = scores[row_idx - 1, col_idx] + xml_continue_gap_penalty
else:
same_col_score = scores[row_idx - 1, col_idx] + xml_new_gap_penalty
if not page_string[row_idx - 1] == ' ':
same_col_score += gap_not_after_space_penalty
max_score = max(diag_score, same_col_score, same_row_score)
scores[row_idx, col_idx] = max_score
if diag_score == max_score:
pointers[row_idx, col_idx] = 0
elif same_col_score == max_score:
pointers[row_idx, col_idx] = -1
else:
pointers[row_idx, col_idx] = 1
score = scores[len(page_string), len(xml_string)]
if score_only:
return score
cur_row = len(page_string)
cur_col = len(xml_string)
aligned_page_string = ""
aligned_xml_string = ""
while not (cur_row == 0 and cur_col == 0):
if pointers[cur_row, cur_col] == -1:
cur_row -= 1
aligned_xml_string += gap_character
aligned_page_string += page_string[cur_row]
elif pointers[cur_row, cur_col] == 1:
cur_col -= 1
aligned_page_string += gap_character
aligned_xml_string += xml_string[cur_col]
else:
cur_row -= 1
cur_col -= 1
aligned_xml_string += xml_string[cur_col]
aligned_page_string += page_string[cur_row]
aligned_page_string = aligned_page_string[::-1]
aligned_xml_string = aligned_xml_string[::-1]
alignment = [aligned_page_string, aligned_xml_string]
return alignment, score
def locate_table(page_words, table):
#sorted_words = sorted(words, key=functools.cmp_to_key(compare_meta))
sorted_words = page_words
page_text = " ".join([word[4] for word in sorted_words])
page_text_source = []
for num, word in enumerate(sorted_words):
for c in word[4]:
page_text_source.append(num)
page_text_source.append(None)
page_text_source = page_text_source[:-1]
table_text = table_to_text(table)
table_text_source = []
for num, cell in enumerate(table['cells']):
for c in cell['text_content'].strip():
table_text_source.append(num)
table_text_source.append(None)
table_text_source = table_text_source[:-1]
X = page_text.replace("~", "^")
Y = table_text.replace("~", "^")
match_reward = 3
mismatch_penalty = -2
#new_gap_penalty = -10
continue_gap_penalty = -0.05
page_boundary_gap_reward = 0.2
alignment, score = align(X, Y, match_reward=match_reward, mismatch_penalty=mismatch_penalty,
page_boundary_gap_reward=page_boundary_gap_reward, score_only=False,
gap_character='~')
table_words = set()
column_words = dict()
row_words = dict()
cell_words = dict()
page_count = 0
table_count = 0
for char1, char2 in zip(alignment[0], alignment[1]):
if not char1 == "~":
if char1 == char2:
table_words.add(page_text_source[page_count])
cell_num = table_text_source[table_count]
if not cell_num is None:
if cell_num in cell_words:
cell_words[cell_num].add(page_text_source[page_count])
else:
cell_words[cell_num] = set([page_text_source[page_count]])
page_count += 1
if not char2 == "~":
table_count += 1
inliers = []
for word_num in table_words:
if word_num:
inliers.append(sorted_words[word_num])
if len(inliers) == 0:
return None, None
cell_bboxes = {}
for cell_num, cell in enumerate(table['cells']):
cell_bbox = None
if cell_num in cell_words:
for word_num in cell_words[cell_num]:
if not word_num is None:
word_bbox = sorted_words[word_num][0:4]
if not cell_bbox:
cell_bbox = [entry for entry in word_bbox]
else:
cell_bbox[0] = min(cell_bbox[0], word_bbox[0])
cell_bbox[1] = min(cell_bbox[1], word_bbox[1])
cell_bbox[2] = max(cell_bbox[2], word_bbox[2])
cell_bbox[3] = max(cell_bbox[3], word_bbox[3])
cell_bboxes[cell_num] = cell_bbox
return cell_bboxes, inliers
def string_similarity(string1, string2):
return SequenceMatcher(None, string1, string2).ratio()
# My current theory is that this is the correct code but that some examples are simply wrong
# (for example, the bolded text is aligned correctly but not the normal text)
def adjust_bbox_coordinates(data, doc):
# Change bbox coordinates to be relative to PyMuPDF page.rect coordinate space
media_box = doc[0].mediabox
mat = doc[0].transformation_matrix
for cell in data['html']['cells']:
if not 'bbox' in cell:
continue
bbox = list(Rect(cell['bbox']) * mat)
bbox = [bbox[0] + media_box[0],
bbox[1] - media_box[1],
bbox[2] + media_box[0],
bbox[3] - media_box[1]]
cell['bbox'] = bbox
def create_document_page_image(doc, page_num, zoom=None, output_image_max_dim=1000):
page = doc[page_num]
if zoom is None:
zoom = output_image_max_dim / max(page.rect)
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix = mat, alpha = False)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return img
class AnnotationMismatchException(Exception):
pass
class HTMLParseOverlappingGridCellsException(Exception):
pass
class HTMLParseMissingGridCellsException(Exception):
pass
class SmallTableException(Exception):
pass
class AmbiguousHeaderException(Exception):
pass
class OversizedHeaderException(Exception):
pass
class RowColumnOverlapException(Exception):
pass
# Average edit distance > 0.05
class TextAnnotationQualityException(Exception):
pass
class UndeterminedRowBoundaryException(Exception):
pass
class UndeterminedColumnBoundaryException(Exception):
pass
# For cases where the data contains a cent symbol in its own column/cell, etc.
class OversegmentedColumnsException(Exception):
pass
# For cases where the iterative cell text bounding box adjustment doesn't quickly converge
class RunawayTextAdjustmentException(Exception):
pass
# For cases where the same grid cell is assigned to multiple spanning cells
class AmbiguousSpanningCellException(Exception):
pass
class RowsIntersectException(Exception):
pass
class ColumnsIntersectException(Exception):
pass
class DotsInCellTextBboxException(Exception):
pass
class PoorTextCellFitException(Exception):
pass
# Use for interrupting after a specific event occurs for debugging
class DebugException(Exception):
pass
# Specific to this dataset; cells at the top of the table can be incorrectly merged
# Merged cells at the top of the table are not inherently bad, but for this dataset we need to catch these
class OvermergedCellsException(Exception):
pass
# Headers that are incomplete and stopped at a projected row header
class IncompleteHeaderException(Exception):
pass
class NoTableBodyException(Exception):
pass
class DotsRetainedException(Exception):
pass
class BadProjectedRowHeaderException(Exception):
pass
class MultipleColumnHeadersException(Exception):
pass
class TextAnnotationQualityException(Exception):
pass
def create_table_dict(annotation_data):
table_dict = {}
table_dict['reject'] = []
table_dict['fix'] = []
cells = []
for cell in annotation_data['cells']:
new_cell = {}
new_cell['text_content'] = ' '.join(cell['content']).strip()
new_cell['pdf_text_tight_bbox'] = []
new_cell['column_nums'] = list(range(cell['start_col'], cell['end_col']+1))
new_cell['row_nums'] = list(range(cell['start_row'], cell['end_row']+1))
new_cell['is_column_header'] = False
cells.append(new_cell)
# Make sure no grid locations are duplicated
# Could be bad data or bad parsing algorithm
grid_cell_locations = []
for cell in cells:
for row_num in cell['row_nums']:
for column_num in cell['column_nums']:
grid_cell_locations.append((row_num, column_num))
if not len(grid_cell_locations) == len(set(grid_cell_locations)):
table_dict['reject'].append("HTML overlapping grid cells")
num_rows = max([max(cell['row_nums']) for cell in cells]) + 1
num_columns = max([max(cell['column_nums']) for cell in cells]) + 1
table_dict['cells'] = cells
table_dict['rows'] = {row_num: {'is_column_header': False} for row_num in range(num_rows)}
table_dict['columns'] = {column_num: {} for column_num in range(num_columns)}
return table_dict
def complete_table_grid(table_dict):
rects_by_row = defaultdict(lambda: [None, None, None, None])
rects_by_column = defaultdict(lambda: [None, None, None, None])
table_rect = Rect()
# Determine bounding box for rows and columns
for cell in table_dict['cells']:
if not 'pdf_text_tight_bbox' in cell or len(cell['pdf_text_tight_bbox']) == 0:
continue
bbox = cell['pdf_text_tight_bbox']
table_rect.include_rect(list(bbox))
min_row = min(cell['row_nums'])
if rects_by_row[min_row][1] is None:
rects_by_row[min_row][1] = bbox[1]
else:
rects_by_row[min_row][1] = min(rects_by_row[min_row][1], bbox[1])
max_row = max(cell['row_nums'])
if rects_by_row[max_row][3] is None:
rects_by_row[max_row][3] = bbox[3]
else:
rects_by_row[max_row][3] = max(rects_by_row[max_row][3], bbox[3])
min_column = min(cell['column_nums'])
if rects_by_column[min_column][0] is None:
rects_by_column[min_column][0] = bbox[0]
else:
rects_by_column[min_column][0] = min(rects_by_column[min_column][0], bbox[0])
max_column = max(cell['column_nums'])
if rects_by_column[max_column][2] is None:
rects_by_column[max_column][2] = bbox[2]
else:
rects_by_column[max_column][2] = max(rects_by_column[max_column][2], bbox[2])
table_bbox = list(table_rect)
table_dict['pdf_table_bbox'] = table_bbox
for row_num, row_rect in rects_by_row.items():
row_rect[0] = table_bbox[0]
row_rect[2] = table_bbox[2]
for col_num, col_rect in rects_by_column.items():
col_rect[1] = table_bbox[1]
col_rect[3] = table_bbox[3]
for k, row in table_dict['rows'].items():
v = rects_by_row[k]
table_dict['rows'][k]['pdf_row_bbox'] = list(v)
for k, column in table_dict['columns'].items():
v = rects_by_column[k]
table_dict['columns'][k]['pdf_column_bbox'] = list(v)
for k, row in table_dict['rows'].items():
for elem in row['pdf_row_bbox']:
if elem is None:
table_dict['reject'].append("undetermined row boundary")
for k, column in table_dict['columns'].items():
for elem in column['pdf_column_bbox']:
if elem is None:
table_dict['reject'].append("undetermined column boundary")
# Adjust bounding boxes if minor overlap
fixed_overlap = False
num_rows = len(table_dict['rows'])
for row_num in range(num_rows-1):
row1_bbox = table_dict['rows'][row_num]['pdf_row_bbox']
row2_bbox = table_dict['rows'][row_num+1]['pdf_row_bbox']
overlap1 = overlap(row1_bbox, row2_bbox)
overlap2 = overlap(row2_bbox, row1_bbox)
if overlap1 > 0 and overlap2 > 0:
if overlap1 < 0.18 and overlap2 < 0.18:
fixed_overlap = True
midpoint = 0.5 * (row1_bbox[3] + row2_bbox[1])
table_dict['rows'][row_num]['pdf_row_bbox'][3] = midpoint
table_dict['rows'][row_num+1]['pdf_row_bbox'][1] = midpoint
fixed_overlap = True
else:
table_dict['reject'].append("rows intersect")
# Intersect each row and column to determine grid cell bounding boxes
#page_words = page.get_text_words()
for cell in table_dict['cells']:
rows_rect = Rect()
cols_rect = Rect()
for row_num in cell['row_nums']:
rows_rect.include_rect(table_dict['rows'][row_num]['pdf_row_bbox'])
for col_num in cell['column_nums']:
cols_rect.include_rect(table_dict['columns'][col_num]['pdf_column_bbox'])
pdf_bbox = rows_rect.intersect(cols_rect)
cell['pdf_bbox'] = list(pdf_bbox)
def identify_projected_row_headers(table_dict):
num_cols = len(table_dict['columns'])
cells_with_text_count_by_row = defaultdict(int)
all_cells_in_row_only_in_one_row_by_row = defaultdict(lambda: True)
has_first_column_cell_with_text_by_row = defaultdict(bool)
for cell in table_dict['cells']:
if len(cell['text_content']) > 0:
for row_num in cell['row_nums']:
cells_with_text_count_by_row[row_num] += 1
if 0 in cell['column_nums']:
has_first_column_cell_with_text_by_row[row_num] = True
one_row_only = len(cell['row_nums']) == 1
for row_num in cell['row_nums']:
all_cells_in_row_only_in_one_row_by_row[row_num] = all_cells_in_row_only_in_one_row_by_row[row_num] and one_row_only
projected_row_header_rows = set()
for row_num, row in table_dict['rows'].items():
if (not row['is_column_header'] and cells_with_text_count_by_row[row_num] == 1
and all_cells_in_row_only_in_one_row_by_row[row_num]
and has_first_column_cell_with_text_by_row[row_num]):
projected_row_header_rows.add(row_num)
return projected_row_header_rows
def annotate_projected_row_headers(table_dict):
num_cols = len(table_dict['columns'])
projected_row_header_rows = identify_projected_row_headers(table_dict)
cells_to_remove = []
for cell in table_dict['cells']:
if len(set(cell['row_nums']).intersection(projected_row_header_rows)) > 0:
if len(cell['text_content']) > 0:
cell['column_nums'] = list(range(num_cols))
cell['is_projected_row_header'] = True
else:
cells_to_remove.append(cell) # Consolidate blank cells after the first cell into the projected row header
else:
cell['is_projected_row_header'] = False
for cell in cells_to_remove:
table_dict['fix'].append('merged projected row header')
table_dict['cells'].remove(cell)
for row_num, row in table_dict['rows'].items():
if row_num in projected_row_header_rows:
row['is_projected_row_header'] = True
else:
row['is_projected_row_header'] = False
# Delete projected row headers in last rows
num_rows = len(table_dict['rows'])
row_nums_to_delete = []
for row_num in range(num_rows-1, -1, -1):
if table_dict['rows'][row_num]['is_projected_row_header']:
row_nums_to_delete.append(row_num)
else:
break
if len(row_nums_to_delete) > 0:
for row_num in row_nums_to_delete:
del table_dict['rows'][row_num]
table_dict['fix'].append('removed projected row header at bottom of table')
for cell in table_dict['cells'][:]:
if row_num in cell['row_nums']:
table_dict['cells'].remove(cell)
def merge_group(table_dict, group):
cells_to_delete = []
if len(group) == 1:
return table_dict
group = sorted(group, key=lambda k: min(k['row_nums']))
cell = group[0]
try:
cell_text_rect = Rect(cell['pdf_text_tight_bbox'])
except:
cell_text_rect = Rect()
for cell2 in group[1:]:
cell['row_nums'] = list(set(sorted(cell['row_nums'] + cell2['row_nums'])))
cell['column_nums'] = list(set(sorted(cell['column_nums'] + cell2['column_nums'])))
cell['text_content'] = (cell['text_content'].strip() + " " + cell2['text_content'].strip()).strip()
try:
cell2_text_rect = Rect(cell2['pdf_text_tight_bbox'])
except:
cell2_text_rect = Rect()
cell_text_rect = cell_text_rect.include_rect(list(cell2_text_rect))
if cell_text_rect.get_area() == 0:
cell['pdf_text_tight_bbox'] = []
else:
cell['pdf_text_tight_bbox'] = list(cell_text_rect)
cell['is_projected_row_header'] = False
cells_to_delete.append(cell2)
try:
for cell in cells_to_delete:
table_dict['cells'].remove(cell)
table_dict['fix'].append('merged oversegmented spanning cell')
except:
table_dict['reject'].append("ambiguous spanning cell")
#raise AmbiguousSpanningCellException
def remove_empty_rows(table_dict):
num_rows = len(table_dict['rows'])
num_columns = len(table_dict['columns'])
has_content_by_row = defaultdict(bool)
for cell in table_dict['cells']:
has_content = len(cell['text_content'].strip()) > 0
for row_num in cell['row_nums']:
has_content_by_row[row_num] = has_content_by_row[row_num] or has_content
row_num_corrections = np.cumsum([int(not has_content_by_row[row_num]) for row_num in range(num_rows)]).tolist()
# Delete cells in empty rows and renumber other cells
cells_to_delete = []
for cell in table_dict['cells']:
new_row_nums = []
for row_num in cell['row_nums']:
if has_content_by_row[row_num]:
new_row_nums.append(row_num - row_num_corrections[row_num])
cell['row_nums'] = new_row_nums
if len(new_row_nums) == 0:
cells_to_delete.append(cell)
for cell in cells_to_delete:
table_dict['fix'].append('removed empty row')
table_dict['cells'].remove(cell)
rows = {}
for row_num, has_content in has_content_by_row.items():
if has_content:
new_row_num = row_num - row_num_corrections[row_num]
rows[new_row_num] = table_dict['rows'][row_num]
table_dict['rows'] = rows
def merge_rows(table_dict):
num_rows = len(table_dict['rows'])
num_columns = len(table_dict['columns'])
co_occurrence_matrix = np.zeros((num_rows, num_rows))
for cell in table_dict['cells']:
for row_num1 in cell['row_nums']:
for row_num2 in cell['row_nums']:
if row_num1 >= row_num2:
continue
co_occurrence_matrix[row_num1, row_num2] += len(cell['column_nums'])
new_row_num = 0
current_row_group = 0
keep_row = [True]
row_grouping = [current_row_group]
for row_num in range(num_rows-1):
if not co_occurrence_matrix[row_num, row_num+1] == num_columns:
keep_row.append(True)
new_row_num += 1
else:
table_dict['fix'].append('merged rows spanned together in every column')
keep_row.append(False)
row_grouping.append(new_row_num)
for cell in table_dict['cells']:
cell['row_nums'] = [row_grouping[row_num] for row_num in cell['row_nums'] if keep_row[row_num]]
table_dict['rows'] = {row_grouping[row_num]: table_dict['rows'][row_num] for row_num in range(num_rows) if keep_row[row_num]}
def remove_empty_columns(table_dict):
num_rows = len(table_dict['rows'])
num_columns = len(table_dict['columns'])
has_content_by_column = defaultdict(bool)
for cell in table_dict['cells']:
has_content = len(cell['text_content'].strip()) > 0
for column_num in cell['column_nums']:
has_content_by_column[column_num] = has_content_by_column[column_num] or has_content
column_num_corrections = np.cumsum([int(not has_content_by_column[column_num]) for column_num in range(num_columns)]).tolist()
# Delete cells in empty columns and renumber other cells
cells_to_delete = []
for cell in table_dict['cells']:
new_column_nums = []
for column_num in cell['column_nums']:
if has_content_by_column[column_num]:
new_column_nums.append(column_num - column_num_corrections[column_num])
cell['column_nums'] = new_column_nums
if len(new_column_nums) == 0:
cells_to_delete.append(cell)
for cell in cells_to_delete:
table_dict['fix'].append('removed empty column')
table_dict['cells'].remove(cell)
columns = {}
for column_num, has_content in has_content_by_column.items():
if has_content:
new_column_num = column_num - column_num_corrections[column_num]
columns[new_column_num] = table_dict['columns'][column_num]
table_dict['columns'] = columns
def merge_columns(table_dict):
num_rows = len(table_dict['rows'])
num_columns = len(table_dict['columns'])
co_occurrence_matrix = np.zeros((num_columns, num_columns))
for cell in table_dict['cells']:
for column_num1 in cell['column_nums']:
for column_num2 in cell['column_nums']:
if column_num1 >= column_num2:
continue
co_occurrence_matrix[column_num1, column_num2] += len(cell['row_nums'])
new_column_num = 0
current_column_group = 0
keep_column = [True]
column_grouping = [current_column_group]
for column_num in range(num_columns-1):
if not co_occurrence_matrix[column_num, column_num+1] == num_rows:
keep_column.append(True)
new_column_num += 1
else:
table_dict['fix'].append('merged columns spanned together in every row')
keep_column.append(False)
column_grouping.append(new_column_num)
for cell in table_dict['cells']:
cell['column_nums'] = [column_grouping[column_num] for column_num in cell['column_nums'] if keep_column[column_num]]
table_dict['columns'] = {column_grouping[column_num]: table_dict['columns'][column_num] for column_num in range(num_columns) if keep_column[column_num]}
# Look for tables with blank cells to merge in the first column
def merge_spanning_cells_in_first_column(table_dict):
first_column_cells = [cell for cell in table_dict['cells'] if 0 in cell['column_nums']]
first_column_cells = sorted(first_column_cells, key=lambda item: max(item['row_nums']))
first_column_merge_exclude = set()
# Look for blank cells at bottom of first column
text_by_row_num = {}
for cell in table_dict['cells']:
if 0 in cell['column_nums']:
for row_num in cell['row_nums']:
if not cell['is_column_header']:
text_by_row_num[row_num] = cell['text_content'].strip()
else:
text_by_row_num[row_num] = "_"
bottom_blank_rows = set()
blank_rows = set()
still_bottom = True
add_bottom_rows = True
for row_num in sorted(table_dict['rows'].keys(), reverse=True):
if len(text_by_row_num[row_num]) > 0:
still_bottom = False
elif still_bottom:
bottom_blank_rows.add(row_num)
else:
add_bottom_rows = False
break
if add_bottom_rows:
first_column_merge_exclude = first_column_merge_exclude.union(bottom_blank_rows)
# Look for tables with multiple headers
num_rows = len(table_dict['rows'])
num_columns = len(table_dict['columns'])
cell_grid = np.zeros((num_rows, num_columns)).astype('str').tolist()
for cell in table_dict['cells']:
for row_num in cell['row_nums']:
for column_num in cell['column_nums']:
cell_grid[row_num][column_num] = cell['text_content']
for row_num1 in range(num_rows-1):
row1 = table_dict['rows'][row_num1]
if not row1['is_column_header']:
continue
for row_num2 in range(row_num1+1, num_rows):
row2 = table_dict['rows'][row_num2]
if row2['is_column_header']:
continue
if cell_grid[row_num1] == cell_grid[row_num2]:
first_column_merge_exclude.add(row_num2)
for cell1 in table_dict['cells']:
for cell2 in table_dict['cells']:
if cell1['is_column_header'] and not cell2['is_column_header']:
if cell1['text_content'] == cell2['text_content'] and len(cell1['text_content'].strip()) > 0:
for row_num in cell2['row_nums']:
first_column_merge_exclude.add(row_num)
current_filled_cell = None
groups = defaultdict(list)
group_num = -1
for cell in first_column_cells:
if len(set(cell['row_nums']).intersection(first_column_merge_exclude)) > 0:
group_num += 1
elif len(cell['text_content']) > 0:
group_num += 1
if group_num >= 0:
groups[group_num].append(cell)
for group_num, group in groups.items():
if len(group) > 1 and not group[0]['is_projected_row_header'] and not group[0]['is_column_header']:
merge_group(table_dict, group)
# STANDARDS:
# 1. Column header, if it exists, is a tree structure. FinTabNet contains no header annotation so we can only
# infer the header given some assumptions. If the top row does not contain all leaf nodes, complete the tree down to the
# leaf nodes.
# 2. There should be no blank cells in the column header. Blank cells should be aggregated into supercells where possible.
# - First, blank supercells should be split into blank grid cells.
# - If a column header cell has only blank grid cells directly below it, extend the cell downward to consume
# any rows of entirely blank cells directly below it.
# - After doing this for all column header cells, if a column header cell has only blank cells above it, consume
# any rows of entirely blank cells directly above it.
# - Blank supercells that occur after this grouping are arguably rightly annotated as supercells, but we will not
# annotate these as supercells at the moment for consistency with previous datasets that annotated these as blank
# cells only. Detecting a blank supercell would not impact the structure inferred for the table.
# - Any remaining blank cells are ambiguous, and while it is not good table design to have these, they're not likely
# to be a nuisance.
# 3. There should be no blank cells in the row header. This is trickier because the row header is not explicitly
# annotated and must be inferred. See below for more on determining which columns are in the row header.
# - For columns in the row header, blank cells should be aggregated under the first cell that does not span the
# entire row. This assumes "top" vertical alignment for text. "Middle" vertical alignment is normally already
# associated with supercells and is already explicit.
# 4. Inferring the row header.
# - The row header is explicit whenever the first N columns do not have a column header. In other words, when
# the stub header is blank. Otherwise it is implicit which columns, if any, correspond to the column header.
# - If a row header exists, it is also a tree just like the column header and must end at a column of leaf nodes.
# Not only does this mean supercells cannot be the final column of a row header, but repeated values in a column
# mean that the column cannot be the final column of a row header.
# - A column that is not part of the row header (possibly the first column) can have repeated values. Having repeated
# values is an indication of row header continuation but not of row header status to begin with.
# - In most cases, numeric values are data. If the numeric values are integer and sorted, this may be part of the row
# header.
# - Rows where only one cell has content, either left justified or centered across the table, are part of an implicit
# first column that begins a row header. The stub header belongs in this first column if there is not a row cell.
# 5. A row cell at the top of the table is either the title of the table (if there are no other row cells in the table),
# or part of the row header if there are additional row cells below, and belongs in an implicit column.
# 6. Tables have at least one row and two columns. A table with only one column is a list.
def correct_header(table_dict, assume_header_if_more_than_two_columns=True):
num_columns = len(table_dict['columns'])
num_rows = len(table_dict['rows'])
if num_columns < 2 or num_rows < 1:
table_dict['reject'].append("small table")
#raise SmallTableException("Table does not have at least one row and two columns")
#---DETERMINE FULL EXTENT OF COLUMN HEADER
# - Each of the below steps determines different rows that must be in the column header.
# - The final column header includes all rows that are originally annotated as being in the column
# header plus any additional rows determined to be in the column header by the following steps.
table_has_column_header = False
# First determine if there is definitely a column header. Four cases:
# 1. We specify that we want to assume there is one for all tables with more than two columns:
if assume_header_if_more_than_two_columns and num_columns > 2:
table_has_column_header = True
# 2. An annotator says there is
if not table_has_column_header:
header_rows = [row_num for row_num, row in table_dict['rows'].items() if row['is_column_header']]
if 0 in header_rows:
table_has_column_header = True
# 3. The cell occupying the first row and column is blank
if not table_has_column_header:
for cell in table_dict['cells']:
if 0 in cell['column_nums'] and 0 in cell['row_nums'] and len(cell['text_content'].strip()) == 0:
table_has_column_header = True
break
# 4. There is a horizontal spanning cell in the first row
if not table_has_column_header:
for cell in table_dict['cells']:
if 0 in cell['row_nums'] and len(cell['column_nums']) > 1:
table_has_column_header = True
break
# Then determine if the column header needs to be extended past its current annotated extent.
# 1. A header that already is annotated in at least one row continues at least until each column
# has a cell occupying only that column
# 2. A header with a column with a blank cell must continue at least as long as the blank cells continue
# (unless rule #1 is satisfied and a possible projected row header is reached?)
if table_has_column_header:
# Do not use this rule; while perhaps not ideal, columns can have the same header
#print("Flattening header")
#num_rows = len(table_dict['rows'])
#num_columns = len(table_dict['columns'])
#cell_grid = np.zeros((num_rows, num_columns)).astype('str').tolist()
#for cell in table_dict['cells']:
# for row_num in cell['row_nums']:
# for column_num in cell['column_nums']:
# cell_grid[row_num][column_num] = cell['text_content']
#flattened_header = ['' for column_num in range(num_columns)]
#for row_num in range(num_rows):
# unique_headers = True
# for column_num in range(num_columns):
# flattened_header[column_num] += ' ' + cell_grid[row_num][column_num]
# flattened_header[column_num] = flattened_header[column_num].strip()
# print(flattened_header)
# for column_num1 in range(num_columns-1):
# for column_num2 in range(column_num1+1, num_columns):
# if flattened_header[column_num1] == flattened_header[column_num2] and len(flattened_header[column_num1]) > 0:
# unique_headers = False
# if unique_headers:
# break
#unique_header_row = row_num
#print(unique_header_row)
first_column_filled_by_row = defaultdict(bool)
for cell in table_dict['cells']:
if 0 in cell['column_nums']:
if len(cell['text_content']) > 0:
for row_num in cell['row_nums']:
first_column_filled_by_row[row_num] = True
first_column_filled_by_row = defaultdict(bool)
for cell in table_dict['cells']:
if 0 in cell['column_nums']:
if len(cell['text_content']) > 0:
for row_num in cell['row_nums']:
first_column_filled_by_row[row_num] = True
first_single_node_row_by_column = defaultdict(lambda: len(table_dict['rows'])-1)
for cell in table_dict['cells']:
if len(cell['column_nums']) == 1:
first_single_node_row_by_column[cell['column_nums'][0]] = min(first_single_node_row_by_column[cell['column_nums'][0]],
max(cell['row_nums']))
first_filled_single_node_row_by_column = defaultdict(lambda: len(table_dict['rows'])-1)
for cell in table_dict['cells']:
if len(cell['column_nums']) == 1 and len(cell['text_content'].strip()) > 0:
first_filled_single_node_row_by_column[cell['column_nums'][0]] = min(first_filled_single_node_row_by_column[cell['column_nums'][0]],
max(cell['row_nums']))
first_filled_cell_by_column = defaultdict(lambda: len(table_dict['rows'])-1)
for cell in table_dict['cells']:
if len(cell['text_content']) > 0:
min_row_num = min(cell['row_nums'])
for column_num in cell['column_nums']:
first_filled_cell_by_column[column_num] = min(first_filled_cell_by_column[column_num],
min_row_num)
projected_row_header_rows = identify_projected_row_headers(table_dict)
if 0 in projected_row_header_rows:
table_dict['reject'].append("bad projected row header")
#raise BadProjectedRowHeaderException('Starting with PRH')
#for row_num in range(num_rows):
# if row_num in projected_row_header_rows:
# projected_row_header_rows.remove(row_num)
# else:
# break
# Header must continue until at least this row
minimum_grid_cell_single_node_row = max(first_single_node_row_by_column.values())
# Header can stop prior to the first of these rows that occurs after the above row
minimum_first_body_row = min(num_rows-1, max(first_filled_cell_by_column.values()))
# Determine the max row for which a column N has been single and filled but column N+1 has not
minimum_all_following_filled = -1
for row_num in range(num_rows):
for column_num1 in range(num_columns-1):
for column_num2 in range(column_num1+1, num_columns):
if (first_filled_single_node_row_by_column[column_num2] > row_num
and first_filled_single_node_row_by_column[column_num1] < first_filled_single_node_row_by_column[column_num2]):
minimum_all_following_filled = row_num + 1
#minimum_projected_row_header_row = min([num_rows-1] + [elem for elem in projected_row_header_rows if elem > minimum_grid_cell_single_node_row])
if len(projected_row_header_rows) > 0:
minimum_projected_row_header_row = min(projected_row_header_rows)
else:
minimum_projected_row_header_row = num_rows
#first_possible_last_header_row = min(minimum_first_body_row, minimum_projected_row_header_row) - 1
first_possible_last_header_row = minimum_first_body_row - 1
last_header_row = max(minimum_all_following_filled,
minimum_grid_cell_single_node_row,
first_possible_last_header_row)
x = last_header_row
while(last_header_row < num_rows and not first_column_filled_by_row[last_header_row+1]):
last_header_row += 1
#incomplete_header = False # temp for debugging
if minimum_projected_row_header_row <= last_header_row:
last_header_row = minimum_projected_row_header_row - 1
#incomplete_header = True
for cell in table_dict['cells']:
if max(cell['row_nums']) <= last_header_row:
cell['is_column_header'] = True
for row_num, row in table_dict['rows'].items():
if row_num <= last_header_row:
row['is_column_header'] = True
#if not x == last_header_row:
# raise DebugException("Header extended")
#if minimum_all_following_filled == last_header_row:
# raise DebugException
#if incomplete_header:
# raise IncompleteHeaderException("Set last header row to be just before minimum projected row header row".format(last_header_row, minimum_projected_row_header_row))
if not table_has_column_header and num_columns == 2:
table_dict['reject'].append("ambiguous header")
#raise AmbiguousHeaderException("Missing header annotation for table with two columns; cannot unambiguously determine header")
def canonicalize(table_dict):
# Preprocessing step: Split every blank spanning cell in the column header into blank grid cells.
cells_to_delete = []
try:
for cell in table_dict['cells']:
if (cell['is_column_header'] and len(cell['text_content'].strip()) == 0
and (len(cell['column_nums']) > 1 or len(cell['row_nums']) > 1)):
cells_to_delete.append(cell)
# Split this blank spanning cell into blank grid cells
for column_num in cell['column_nums']: