-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGhostFaceNets.py
238 lines (203 loc) · 10.9 KB
/
GhostFaceNets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import tensorflow as tf
from tensorflow import keras
import tensorflow.keras.backend as K
def __init_model_from_name__(name, input_shape=(112, 112, 3), weights="imagenet", **kwargs):
name_lower = name.lower()
""" Basic model """
if name_lower == "ghostnetv1":
from backbones import ghost_model
xx = ghost_model.GhostNet(input_shape=input_shape, include_top=False, width=1, **kwargs)
elif name_lower == "ghostnetv2":
from backbones import ghostv2
xx = ghostv2.GhostNetV2(stem_width=16,
stem_strides=1,
width_mul=1.3,
num_ghost_module_v1_stacks=2, # num of `ghost_module` stcks on the head, others are `ghost_module_multiply`, set `-1` for all using `ghost_module`
input_shape=(112, 112, 3),
num_classes=0,
activation="prelu",
classifier_activation=None,
dropout=0,
pretrained=None,
model_name="ghostnetv2",
**kwargs)
else:
return None
xx.trainable = True
return xx
def buildin_models(
stem_model,
dropout=1,
emb_shape=512,
input_shape=(112, 112, 3),
output_layer="GDC",
bn_momentum=0.99,
bn_epsilon=0.001,
add_pointwise_conv=False,
pointwise_conv_act="relu",
use_bias=False,
scale=True,
weights="imagenet",
**kwargs
):
if isinstance(stem_model, str):
xx = __init_model_from_name__(stem_model, input_shape, weights, **kwargs)
name = stem_model
else:
name = stem_model.name
xx = stem_model
if bn_momentum != 0.99 or bn_epsilon != 0.001:
print(">>>> Change BatchNormalization momentum and epsilon default value.")
for ii in xx.layers:
if isinstance(ii, keras.layers.BatchNormalization):
ii.momentum, ii.epsilon = bn_momentum, bn_epsilon
xx = keras.models.clone_model(xx)
inputs = xx.inputs[0]
nn = xx.outputs[0]
if add_pointwise_conv: # Model using `pointwise_conv + GDC` / `pointwise_conv + E` is smaller than `E`
filters = nn.shape[-1] // 2 if add_pointwise_conv == -1 else 512 # Compitable with previous models...
nn = keras.layers.Conv2D(filters, 1, use_bias=False, padding="valid", name="pw_conv")(nn)
# nn = keras.layers.Conv2D(nn.shape[-1] // 2, 1, use_bias=False, padding="valid", name="pw_conv")(nn)
nn = keras.layers.BatchNormalization(momentum=bn_momentum, epsilon=bn_epsilon, name="pw_bn")(nn)
if pointwise_conv_act.lower() == "prelu":
nn = keras.layers.PReLU(shared_axes=[1, 2], name="pw_" + pointwise_conv_act)(nn)
else:
nn = keras.layers.Activation(pointwise_conv_act, name="pw_" + pointwise_conv_act)(nn)
""" GDC """
nn = keras.layers.DepthwiseConv2D(nn.shape[1], use_bias=False, name="GDC_dw")(nn)
# nn = keras.layers.Conv2D(nn.shape[-1], nn.shape[1], use_bias=False, padding="valid", groups=nn.shape[-1])(nn)
nn = keras.layers.BatchNormalization(momentum=bn_momentum, epsilon=bn_epsilon, name="GDC_batchnorm")(nn)
if dropout > 0 and dropout < 1:
nn = keras.layers.Dropout(dropout)(nn)
nn = keras.layers.Conv2D(emb_shape, 1, use_bias=use_bias, kernel_initializer="glorot_normal", name="GDC_conv")(nn)
nn = keras.layers.Flatten(name="GDC_flatten")(nn)
# nn = keras.layers.Dense(emb_shape, activation=None, use_bias=use_bias, kernel_initializer="glorot_normal", name="GDC_dense")(nn)
# `fix_gamma=True` in MXNet means `scale=False` in Keras
embedding = keras.layers.BatchNormalization(momentum=bn_momentum, epsilon=bn_epsilon, scale=scale, name="pre_embedding")(nn)
embedding_fp32 = keras.layers.Activation("linear", dtype="float32", name="embedding")(embedding)
basic_model = keras.models.Model(inputs, embedding_fp32, name=xx.name)
return basic_model
def add_l2_regularizer_2_model(model, weight_decay, custom_objects={}, apply_to_batch_normal=False, apply_to_bias=False):
# https://github.com/keras-team/keras/issues/2717#issuecomment-456254176
if 0:
regularizers_type = {}
for layer in model.layers:
rrs = [kk for kk in layer.__dict__.keys() if "regularizer" in kk and not kk.startswith("_")]
if len(rrs) != 0:
# print(layer.name, layer.__class__.__name__, rrs)
if layer.__class__.__name__ not in regularizers_type:
regularizers_type[layer.__class__.__name__] = rrs
print(regularizers_type)
for layer in model.layers:
attrs = []
if isinstance(layer, keras.layers.Dense) or isinstance(layer, keras.layers.Conv2D):
# print(">>>> Dense or Conv2D", layer.name, "use_bias:", layer.use_bias)
attrs = ["kernel_regularizer"]
if apply_to_bias and layer.use_bias:
attrs.append("bias_regularizer")
elif isinstance(layer, keras.layers.DepthwiseConv2D):
# print(">>>> DepthwiseConv2D", layer.name, "use_bias:", layer.use_bias)
attrs = ["depthwise_regularizer"]
if apply_to_bias and layer.use_bias:
attrs.append("bias_regularizer")
elif isinstance(layer, keras.layers.SeparableConv2D):
# print(">>>> SeparableConv2D", layer.name, "use_bias:", layer.use_bias)
attrs = ["pointwise_regularizer", "depthwise_regularizer"]
if apply_to_bias and layer.use_bias:
attrs.append("bias_regularizer")
elif apply_to_batch_normal and isinstance(layer, keras.layers.BatchNormalization):
# print(">>>> BatchNormalization", layer.name, "scale:", layer.scale, ", center:", layer.center)
if layer.center:
attrs.append("beta_regularizer")
if layer.scale:
attrs.append("gamma_regularizer")
elif apply_to_batch_normal and isinstance(layer, keras.layers.PReLU):
# print(">>>> PReLU", layer.name)
attrs = ["alpha_regularizer"]
for attr in attrs:
if hasattr(layer, attr) and layer.trainable:
setattr(layer, attr, keras.regularizers.L2(weight_decay / 2))
# So far, the regularizers only exist in the model config. We need to
# reload the model so that Keras adds them to each layer's losses.
# temp_weight_file = "tmp_weights.h5"
# model.save_weights(temp_weight_file)
# out_model = keras.models.model_from_json(model.to_json(), custom_objects=custom_objects)
# out_model.load_weights(temp_weight_file, by_name=True)
# os.remove(temp_weight_file)
# return out_model
return keras.models.clone_model(model)
def replace_ReLU_with_PReLU(model, target_activation="PReLU", **kwargs):
from tensorflow.keras.layers import ReLU, PReLU, Activation
def convert_ReLU(layer):
# print(layer.name)
if isinstance(layer, ReLU) or (isinstance(layer, Activation) and layer.activation == keras.activations.relu):
if target_activation == "PReLU":
layer_name = layer.name.replace("_relu", "_prelu")
print(">>>> Convert ReLU:", layer.name, "-->", layer_name)
# Default initial value in mxnet and pytorch is 0.25
return PReLU(shared_axes=[1, 2], alpha_initializer=tf.initializers.Constant(0.25), name=layer_name, **kwargs)
elif isinstance(target_activation, str):
layer_name = layer.name.replace("_relu", "_" + target_activation)
print(">>>> Convert ReLU:", layer.name, "-->", layer_name)
return Activation(activation=target_activation, name=layer_name, **kwargs)
else:
act_class_name = target_activation.__name__
layer_name = layer.name.replace("_relu", "_" + act_class_name)
print(">>>> Convert ReLU:", layer.name, "-->", layer_name)
return target_activation(**kwargs)
return layer
input_tensors = keras.layers.Input(model.input_shape[1:])
return keras.models.clone_model(model, input_tensors=input_tensors, clone_function=convert_ReLU)
def convert_to_mixed_float16(model, convert_batch_norm=False):
policy = keras.mixed_precision.Policy("mixed_float16")
policy_config = keras.utils.serialize_keras_object(policy)
from tensorflow.keras.layers import InputLayer, Activation
from tensorflow.keras.activations import linear, softmax
def do_convert_to_mixed_float16(layer):
if not convert_batch_norm and isinstance(layer, keras.layers.BatchNormalization):
return layer
if isinstance(layer, InputLayer):
return layer
if isinstance(layer, Activation) and layer.activation == softmax:
return layer
if isinstance(layer, Activation) and layer.activation == linear:
return layer
aa = layer.get_config()
aa.update({"dtype": policy_config})
bb = layer.__class__.from_config(aa)
bb.build(layer.input_shape)
bb.set_weights(layer.get_weights())
return bb
input_tensors = keras.layers.Input(model.input_shape[1:])
mm = keras.models.clone_model(model, input_tensors=input_tensors, clone_function=do_convert_to_mixed_float16)
if model.built:
mm.compile(optimizer=model.optimizer, loss=model.compiled_loss, metrics=model.compiled_metrics)
# mm.optimizer, mm.compiled_loss, mm.compiled_metrics = model.optimizer, model.compiled_loss, model.compiled_metrics
# mm.built = True
return mm
def convert_mixed_float16_to_float32(model):
from tensorflow.keras.layers import InputLayer, Activation
from tensorflow.keras.activations import linear
def do_convert_to_mixed_float16(layer):
if not isinstance(layer, InputLayer) and not (isinstance(layer, Activation) and layer.activation == linear):
aa = layer.get_config()
aa.update({"dtype": "float32"})
bb = layer.__class__.from_config(aa)
bb.build(layer.input_shape)
bb.set_weights(layer.get_weights())
return bb
return layer
input_tensors = keras.layers.Input(model.input_shape[1:])
return keras.models.clone_model(model, input_tensors=input_tensors, clone_function=do_convert_to_mixed_float16)
def convert_to_batch_renorm(model):
def do_convert_to_batch_renorm(layer):
if isinstance(layer, keras.layers.BatchNormalization):
aa = layer.get_config()
aa.update({"renorm": True, "renorm_clipping": {}, "renorm_momentum": aa["momentum"]})
bb = layer.__class__.from_config(aa)
bb.build(layer.input_shape)
bb.set_weights(layer.get_weights() + bb.get_weights()[-3:])
return bb
return layer
input_tensors = keras.layers.Input(model.input_shape[1:])
return keras.models.clone_model(model, input_tensors=input_tensors, clone_function=do_convert_to_batch_renorm)