-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
725 lines (610 loc) · 26.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import streamlit as st
import pandas as pd
import numpy as np
import re
from datasets import load_dataset
import plotly.express as px
from gradio_client import Client
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
pd.set_option("display.max_colwidth", None)
# Function to read and apply CSS from the local file
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# Layout for tab navigation
def generate_tabs():
tabs = ["Home", "Analysis", "Optimization", "Visualization", "FAQ", "About"]
emojis = ["🏠", "🔍", "🔑", "📊", "🤔", "ℹ️"]
if "current_tab" not in st.session_state:
st.session_state.current_tab = tabs[0]
col1, col2, col3, col4, col5, col6 = st.columns(6)
columns = [col1, col2, col3, col4, col5, col6]
for idx, (col, tab, emoji) in enumerate(zip(columns, tabs, emojis)):
with col:
if tab == st.session_state.current_tab:
st.button(f"{emoji} {tab}", key=f"tab-{idx}", disabled=True)
else:
if st.button(f"{emoji} {tab}", key=f"tab-{idx}"):
st.session_state.current_tab = tab
@st.cache_data
def process_model_data(details):
data = load_dataset(
"open-llm-leaderboard/" + details, data_files="results_*.json", split="train"
)
config_general = data[0]["config_general"]["model_name"]
results = data[0]["results"]
df = pd.DataFrame(results).T
df["accuracy"] = df["acc_norm"].combine_first(df["mc2"])
df["accuracy"] = df["accuracy"].fillna(df["acc"])
df = df[["accuracy"]]
df = df.T.reset_index(drop=True)
df.insert(0, "model_name", config_general)
def clean_column_name(column_name):
clean_name = re.sub(r"^harness\|", "", column_name)
clean_name = re.sub(r"\|.*?\|", "", clean_name)
clean_name = re.sub(r"\|[0-9]+$", "", clean_name)
clean_name = clean_name.replace("hendrycksTest", "")
clean_name = clean_name.replace("-", "")
return clean_name
df.columns = df.columns.map(clean_column_name)
return df
# Function to generate the FAQ page
def generate_faq_page():
# Define questions and answers for the FAQ
faq = {
"What is the knapsack optimization algorithm?": """It is a method used generally to solve problems that involve selecting a subset of items with given weights and values to maximize total value without exceeding a weight limit.""",
"How does knapsack optimization assist with model selection?": """The tool applies this algorithm to the selection of language models by treating models as items, model accuracy as value, and your capacity to implement models as the weight limit.""",
"What are the limitations of this tool?": """This tool assumes all models have a uniform implementation cost and complexity, and it optimizes selection based on accuracy alone, which doesn't reflect subtler real-world considerations such as integration times and maintenance.""",
"What criteria can I optimize apart from accuracy?": """Currently, the tool focuses on accuracy due to dataset constraints. However, if integrated with richer data, it could also consider criteria such as cost, organization/domain fit, business value, security impact, and complexity.""",
"Can this tool recommend the best models for my specific needs?": """The tool suggests models that might fit your needs based on accuracy, but it does not consider the unique context of your organization. Hence, we recommend using these suggestions as a starting point for further investigation.""",
"Is this tool suitable for making definitive decisions on model selection?": """No, it should be used as a guide. Due to its experimental nature and limitations, final decisions should include an in-depth evaluation of each model, considering all operational factors.""",
"What will be included in the future updates of this tool?": """Future developments aim to incorporate more detailed criteria for decision-making, such as domain-specific weights, usability feedback, and more nuanced cost information.""",
"Why is considering multiple criteria important when selecting a language model?": """Just like buying a car involves more than assessing the engine, selecting a language model requires evaluating various aspects to ensure it meets both performance requirements and operational capabilities of your organization.""",
"Where can I learn more about the methodologies behind model selection?": """For an in-depth understanding, please refer to the comprehensive list of references and literature reviews included in the About or References sections of the app.""",
}
for question, answer in faq.items():
with st.expander(question):
st.write(answer)
@st.cache_data
def knapsack(weights, values, W):
n = len(values)
dp = [[0 for x in range(W + 1)] for i in range(n + 1)]
# Build the DP table
for i in range(1, n + 1):
for w in range(1, W + 1):
if weights[i - 1] <= w:
dp[i][w] = max(
dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]]
)
else:
dp[i][w] = dp[i - 1][w]
# Find out the models that are included in the final selection
selected_index = []
w = W
for i in range(n, 0, -1):
if dp[i][w] != dp[i - 1][w]: # This means the item was included
selected_index.append(i - 1)
w -= weights[i - 1] # Reduce the weight from the total weight
return selected_index[::-1] # Return the list in the order of the items
@st.cache_data
def extract_model_name(row):
model_url_pattern = r'href="([^"]+)"'
model_url_match = re.search(model_url_pattern, row["Model"])
if model_url_match:
model_name = model_url_match.group(1).split("/")[-1]
return model_name
return row["model_name_for_query"]
@st.cache_data
def get_api_data():
# Function to get data from API
client = Client("https://felixz-open-llm-leaderboard.hf.space/")
json_data = client.predict("", "", api_name="/predict")
df = pd.DataFrame(json_data["data"], columns=json_data["headers"])
model_names_text = df["model_name_for_query"].to_string(index=False, header=False)
filename = "model_names.txt"
with open(filename, "w") as file:
file.write(model_names_text)
df["Model Name"] = df.apply(extract_model_name, axis=1)
desired_order = [
"T",
"Model",
"Model Name",
"Average ⬆️",
"HellaSwag",
"MMLU",
"TruthfulQA",
"Winogrande",
"GSM8K",
"Type",
"Architecture",
"Weight type",
"Precision",
"Merged",
"#Params (B)",
"Hub ❤️",
"Available on the hub",
"Model sha",
"Flagged",
"MoE",
]
df = df[desired_order]
return df
@st.cache_data
def generate_final_df(num_models):
final_df = pd.DataFrame()
with open("model_names.txt", "r") as file:
lines = file.readlines()
progress_bar = st.progress(0)
with st.info(
"Fetching data, please wait..."
): # Create an empty placeholder for the progress bar
for i, line in enumerate(lines[:num_models]):
model_name = line.strip()
details = f"details_{model_name.replace('/', '__')}"
try:
df = process_model_data(details)
except Exception as e:
st.warning(
f"An error occurred while processing model: {details}. Skipping this model."
)
# Update the progress bar in the Model Analysis view
progress = (i + 1) / num_models
progress_bar.progress(progress)
final_df = pd.concat([final_df, df], ignore_index=True)
st.success("Data fetched successfully!")
return final_df
@st.cache_data(experimental_allow_widgets=True)
def visualize_models(final_df):
# Main title
st.header("Model Domain Visualizations")
# Set default domains
default_domains = [
"arc:challenge",
"hellaswag",
"truthfulqa:mc",
"winogrande",
"gsm8k",
"all",
]
# Sidebar for domain and model_name selection
with st.sidebar:
# 'Select All' feature option
all_domains = list(final_df.columns[1:]) # Exclude the 'model_name' column
selected_domains = st.multiselect(
"Select domains to visualize:",
options=["Select All"] + all_domains,
default=default_domains,
)
# Check if 'Select All' was chosen or if the user's selection matches all domains
if "Select All" in selected_domains or set(selected_domains) == set(
all_domains
):
selected_domains = all_domains # If so, use all domains
# Removing 'Select All' from the list if there are other domains selected
if "Select All" in selected_domains and len(selected_domains) > 1:
selected_domains.remove("Select All")
with st.expander("Bar Chart (Mean Accuracy per Model)", expanded=True):
# Bar chart: Mean accuracy across selected domains for each model
mean_accuracies = final_df[selected_domains].mean(axis=1)
final_df["mean_accuracy"] = mean_accuracies
fig_bar = px.bar(
final_df.nlargest(10, "mean_accuracy"),
x="mean_accuracy",
y="model_name",
orientation="h",
color="mean_accuracy",
title="Mean Accuracy Across Selected Domains",
)
fig_bar.update_layout(plot_bgcolor="rgba(0,0,0,0)")
st.plotly_chart(fig_bar, use_container_width=True)
with st.expander("Line Chart (Trend of Accuracy per Domain)", expanded=True):
# Line chart: Trend of model accuracies across selected domains
domain_to_plot = st.selectbox(
"Select a Domain for line chart:",
final_df.columns[1:],
key="domain_line_chart",
)
fig_line = px.line(
final_df,
x="model_name",
y=domain_to_plot,
title=f"Accuracy Trend for {domain_to_plot}",
)
fig_line.update_layout(plot_bgcolor="rgba(0,0,0,0)")
st.plotly_chart(fig_line, use_container_width=True)
with st.expander("Radial Bar Chart (Average Accuracy)", expanded=True):
# Radial bar chart: Median accuracy as radial bars
median_accuracies = final_df[selected_domains].median(axis=1)
fig_radial_bar = px.bar_polar(
final_df,
r=median_accuracies,
theta="model_name",
color=selected_domains[0], # Color based on the first selected domain
title="Radial Bar Chart: Median Accuracy per Model",
template="plotly_dark",
)
st.plotly_chart(fig_radial_bar, use_container_width=True)
# Scatter Plot
with st.expander("Scatter Plot (Accuracy Across Models)", expanded=True):
selected_domain_scatter = st.selectbox(
"Select domain for scatter plot:",
selected_domains,
key="domain_scatter_plot",
)
fig_scatter = px.scatter(
final_df,
x="model_name",
y=selected_domain_scatter,
color="model_name",
title=f"Model Performances on {selected_domain_scatter}",
)
st.plotly_chart(fig_scatter, use_container_width=True)
# Tree Map
with st.expander(
"Tree Map (Hierarchical View of Domain Accuracies)", expanded=True
):
fig_tree = px.treemap(
final_df.melt(
id_vars="model_name",
value_vars=selected_domains,
var_name="Domain",
value_name="Accuracy",
),
path=["model_name", "Domain"],
values="Accuracy",
title="Tree Map of Domain Accuracies",
)
st.plotly_chart(fig_tree, use_container_width=True)
# Area Plot
with st.expander("Area Plot (Aggregate Domain Accuracy)", expanded=True):
selected_domain_area = st.selectbox(
"Select domain for area plot:", selected_domains, key="domain_area_plot"
)
fig_area = px.area(
final_df,
x="model_name",
y=selected_domain_area,
title=f"Area Plot of {selected_domain_area} Accuracy Over Models",
)
st.plotly_chart(fig_area, use_container_width=True)
# Bubble Chart
with st.expander("Bubble Chart (Domain Accuracies and Counts)", expanded=True):
selected_domain_bubble = st.selectbox(
"Select domain for bubble chart:",
selected_domains,
key="domain_bubble_chart",
)
final_df["count"] = 1 # Placeholder for count dimension
fig_bubble = px.scatter(
final_df,
x="model_name",
y=selected_domain_bubble,
size="count", # Size of the bubble could be another meaningful metric
color="model_name",
title=f"Bubble Chart of Accuracies for {selected_domain_bubble}",
)
st.plotly_chart(fig_bubble, use_container_width=True)
# Box Plot
with st.expander("Box Plot (Distribution of Accuracy)", expanded=True):
fig_box = px.box(
final_df, y=selected_domains, title="Box Plot of Model Accuracies"
)
st.plotly_chart(fig_box, use_container_width=True)
# Heatmap
with st.expander("Heatmap (Model Accuracy Across Domains)", expanded=True):
fig_heatmap = px.imshow(
final_df.set_index("model_name")[selected_domains],
title="Heatmap of Model Accuracy Across Domains",
)
st.plotly_chart(fig_heatmap, use_container_width=True)
@st.cache_data()
def generate_profile(df):
st.info("Generating profile report... this may take a while with large datasets.")
pr = df.profile_report()
return pr
# Visualization code using final_df
# This function contains the code for creating and displaying visualizations
@st.cache_data(experimental_allow_widgets=True)
def optimize_model_selection():
with open("model_names.txt", "r") as file:
lines = file.readlines()
num_models = st.slider(
"Number of Models to Consider", min_value=1, max_value=len(lines), value=10
)
final_df = generate_final_df(num_models)
st.write(final_df)
selected_domain = st.selectbox("Select a domain", final_df.columns[1:])
# We'll have a uniform weight of 1 for each model, for simplicity.
weights = [1 for _ in range(num_models)]
values = final_df[selected_domain].values.tolist()
# The weight_parameter now represents the maximum number of models to select
weight_parameter = st.slider(
"Select the maximum number of models to select",
min_value=1,
max_value=num_models,
value=2,
)
selected_indices = knapsack(weights, values, weight_parameter)
st.subheader("Optimal Model Selection")
optimal_model_data = []
for idx in selected_indices:
domain = selected_domain
model_name = final_df.iloc[idx]["model_name"]
accuracy = final_df.iloc[idx][selected_domain]
suggestion = f"The organization can consider adopting the model '{model_name}' within the domain '{domain}' for better performance based on its high accuracy score."
optimal_model_data.append(
{
"Domain": domain,
"Model": model_name,
"Accuracy": accuracy,
"Suggestion": suggestion,
}
)
# Create and display the final DataFrame from the optimal_model_data list
optimal_df = pd.DataFrame(optimal_model_data).reset_index(drop=True)
# Use st.dataframe to render without the index
st.dataframe(optimal_df, use_container_width=True)
st.markdown(
"> **Note:** The selection optimizes for accuracy while respecting the constraint on the number of models."
)
def create_footer():
st.markdown(
"""
<hr style="height:2px;border:none;color:#333;background-color:#333;" />
<div style="position: relative; height: 50px; bottom: 0; width:100%; text-align: center; padding: 10px;">
<p style="color: #999; font-size: 0.9em;">© 2024 Vidhya Varshany. All rights reserved.</p>
</div>
""",
unsafe_allow_html=True,
)
def main():
st.set_page_config(
page_title="Dynamic LLM Ensemble Selection",
page_icon="assets/favicon.ico",
layout="wide",
)
local_css("style.css")
# Custom CSS to inject for reducing top margin of the title
st.markdown(
"""
<style>
.css-158tj05 {
margin-bottom: 0rem;
margin-top: -55px; /* Adjust top margin as required */
}
.css-16huue1 { /* this is for the navigation buttons padding */
padding-bottom: 1rem;
}
h1 {
text-align: center;
line-height: -10; /* Decreased line-height */
}
</style>
""",
unsafe_allow_html=True,
)
# Inject a custom CSS to reduce the padding at the top of the page
st.markdown(
"""
<style>
.main .block-container {
padding-top: 0rem; /* reduces the top padding */
}
.main .block-container .css-18e3th9 {
padding-top: 0rem; /* reduces the top padding for the first element inside block-container */
}
</style>
""",
unsafe_allow_html=True,
)
# Title of your app (adjusted with reduced space)
st.markdown(
"<h1 style='text-align: center;'>Dynamic LLM Ensemble Selection Dashboard</h1>",
unsafe_allow_html=True,
)
# Initialize the current tab if it doesn't exist in the session state
if "current_tab" not in st.session_state:
st.session_state.current_tab = "Home"
# Run the tab generation function
generate_tabs()
# Main app - This switches between pages based on what the user has selected
if st.session_state.current_tab == "Home":
st.subheader("Explore the top-performing models")
df = get_api_data()
# Convert DataFrame to HTML table with clickable links
def convert_df_to_html(df):
return df.to_html(escape=False, index=False)
with st.container(height=600):
# Display DataFrame as HTML with clickable links
st.write(convert_df_to_html(df), unsafe_allow_html=True)
# Interactive Model Selection
st.subheader("Select the Type of Models")
types = df["Type"].unique()
selected_types = st.multiselect(
"Choose model type(s) to display", options=types, default=types
)
# Filter the DataFrame based on selected types
filtered_df = df[df["Type"].isin(selected_types)]
# Bar chart with performance comparison
st.subheader("Average Scores by Model")
if not filtered_df.empty:
top_10_models_df = filtered_df.sort_values(by="Average ⬆️", ascending=False).head(10)
st.bar_chart(top_10_models_df.set_index("Model Name")["Average ⬆️"])
else:
st.error("No models selected. Please select at least one model type.")
st.subheader("Pandas Profiling")
# Use the cached function in your app
if st.button("Generate Profile"):
with st.container(height=600):
profile = generate_profile(df)
st_profile_report(profile)
# Evaluation Methodology section
st.markdown("## Evaluation Methodology")
with st.expander("Benchmarks & Model Categories Explained"):
st.markdown(
"""
- **AI2 Reasoning Challenge (ARC)**: Grade-School Science Questions (25-shot)
- **HellaSwag**: Commonsense Inference (10-shot)
- **MMLU**: Massive Multi-Task Language Understanding, knowledge on 57 domains (5-shot)
- **TruthfulQA**: Propensity to Produce Falsehoods (0-shot)
- **Winogrande**: Adversarial Winograd Schema Challenge (5-shot)
- **GSM8k**: Grade School Math Word Problems Solving Complex Mathematical Reasoning (5-shot)
**Model Categories:**
- 🟢 Pretrained Model: Foundational models created from the ground up.
- 🔶 Fine-Tuned Model: Pretrained models refined by training on additional data.
- ⭕ Instruction-Tuned Model: Tailored to understand task-specific instructions.
- 🟦 RL-Tuned Model: Modified loss function with added policy via reinforcement learning.
"""
)
elif st.session_state.current_tab == "Analysis":
st.title("Model Analysis")
with open("model_names.txt", "r") as file:
lines = file.readlines()
num_models = st.slider(
"Number of Models to Consider", min_value=1, max_value=len(lines), value=10
)
final_df = generate_final_df(num_models)
selected_columns = st.multiselect(
"Select columns to display",
options=final_df.columns.tolist(),
default=final_df.columns[0:10].tolist(),
)
st.write(final_df[selected_columns])
# Single model insights
selected_model = st.selectbox("Select a Model", options=lines)
if st.button("View Selected Model Result"):
model_name = selected_model.strip()
details = f"details_{model_name.replace('/', '__')}"
try:
df = process_model_data(details)
st.write(df)
except Exception as e:
st.warning(
f"An error occurred while processing model: {details}. Skipping this model."
)
elif st.session_state.current_tab == "Optimization":
st.title("Knapsack Optimization") # Accessing final_df again for optimization
optimize_model_selection()
elif st.session_state.current_tab == "Visualization":
st.title("Data Visualization")
filename = "model_names.txt"
with open(filename, "r") as file:
lines = file.readlines()
num_models = st.slider(
"Number of Models to Consider", min_value=1, max_value=len(lines), value=10
)
final_df = generate_final_df(
num_models
) # Accessing final_df again for visualization
visualize_models(final_df)
# New dedicated tab for FAQ
elif st.session_state.current_tab == "FAQ":
generate_faq_page()
elif st.session_state.current_tab == "About":
local_css("style.css")
# Application Overview
st.markdown(
"""
### Application Overview
*Dynamic LLM Ensemble Selection* is an interactive platform that employs knapsack optimization
to guide the selection of language model ensembles.
### Key Features
- **Comparative Analysis**: Contrast and compare language models in detail.
- **Resource Optimization**: Employ knapsack algorithm principles to identify the most cost-effective models.
- **Visual Insights**: Investigate model performance through an array of dynamic visualizations.
- **Usability Focus**: Navigate a user-centric interface that simplifies complex data interpretation.
### Evaluation Methodology
The evaluation harnesses a comprehensive suite of benchmarks for a holistic assessment of language models, including:
"""
)
# Use columns to list the benchmarks in a structured manner
col1, col2, col3 = st.columns(3)
with col1:
st.markdown(
"""
- **ARC**: _AI2 Reasoning Challenge_
Grading based on science questions
- **HellaSwag**:
Tests on common sense reasoning
"""
)
with col2:
st.markdown(
"""
- **MMLU**: _Massive Multi-Task Language Understanding_
Evaluation over multiple domains
- **TruthfulQA**:
Focused on veracity in responses
"""
)
with col3:
st.markdown(
"""
- **Winogrande**:
Solves complex sentence completions
- **GSM8K**:
Examines mathematical problem-solving abilities
"""
)
st.markdown("---")
with st.expander("Citation"):
st.write(
"""
If you find this tool helpful, please consider supporting it by citing it in your publications or sharing it within your network.
"""
)
st.code(
"""
@misc{dynamic_llm_selection,
title={Dynamic LLM Ensemble Selection with Knapsack Optimization},
author={Vidhya Varshany J S},
year={2024}
}
""",
language="bibtex",
)
# Credits
with st.expander("Credits"):
st.markdown(
"""
Special thanks to the Hugging Face community for providing the open LLM leaderboard and the resources to build this application:
- [Hugging Face Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
- [FelixZ Open LLM Leaderboard](https://huggingface.co/spaces/felixz/open_llm_leaderboard)
"""
)
with st.expander("References"):
# References
st.markdown(
"""
To delve deeper into our benchmarks and methodology, consider these resources:
- [Open LLM Leaderboard Overview](https://deepnatural.ai/blog/which-llm-is-better-open-llm-leaderboard-en)
- [The Knapsack Problem and Model Management](https://www.awelm.com/posts/knapsack/)
"""
)
# Contact Information
st.markdown(
"""
### Contact Information
Questions, feedback, or need assistance?
- Email at: [[email protected]](mailto:[email protected])
"""
)
local_css("style.css")
# ... (other parts of the about page) ...
# GitHub link button
st.markdown(
"""
### Follow the Development Journey
Stay updated with the project's progress and all upcoming features.
"""
)
# The actual link wrapped around with the right styling
github_url = "https://github.com/VidhyaVarshanyJS/EnsembleX"
st.markdown(
f'<a href="{github_url}" target="_blank" class="button-style">GitHub Project</a>',
unsafe_allow_html=True,
)
create_footer()
if __name__ == "__main__":
main()