forked from dhairyaj2004/Technopies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiseasedetect.html
114 lines (70 loc) · 3.29 KB
/
diseasedetect.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter&display=swap" rel="stylesheet">
<meta name="viewport" content="width=device-width">
<title>disease detection</title>
<link href='https://fonts.googleapis.com/css?family=Bree Serif' rel='stylesheet'>
<link href="./styles.css" rel="stylesheet" type="text/css" />
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<link href='https://fonts.googleapis.com/css?family=Bree Serif' rel='stylesheet'>
<link rel="stylesheet" type="text/css" href="//fonts.googleapis.com/css?family=Abril+Fatface" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<link href="./styles.css" rel="stylesheet" type="text/css" />
<link rel="icon" href="plant.png">
</head>
<body>
<section class="head3">
<ul class="nav">
<li> <a href="index.html"><img src="./photos/plant.png"></a></li>
<li><a href="index.html">Home</a></li>
<li><a href="info.html">Plant Management</a></li>
<li><a href="diseasedetect.html">Plant Disease Detection</a></li>
<li><a href="./About us.html">About Us</a></li>
</ul>
<!-- <img src="./photos/wiltingplant.gif" alt="" class="bg"> -->
</section>
<div id="mission">
<section class="para">
<div id="index">
<h1>OUR DISEASE DETECTION DEVICE</h1>
<p> If you find an unknown disease that has affected your plant(s), be sure to use our efficient and reliable detection device to receive an initial diagnosis of its condition(s). Our trained Convolutional Neural Network model using machine learning technology can classify up to 8 common plant diseases with 95% accuracy consistently. Just upload a picture of your plant and press run, then our website will display the correct disease category.
</p>
</div>
</section>
</div>
<div id="mission">
<section class="para">
<h6>Upload a picture of your plant below:</h6>
<div id="index5">
<section class="main3">
<input type="file" id="filereader"/>
<button onclick="run()">Run Model</button>
<tone-content>
<tone-play-toggle disabled=""></tone-play-toggle>
</tone-content>
<h1><br></h1>
</div>
<h6>Possible Plant Diseases Output:</h6>
<p>Model will choose from:</p>
<p>🪴 Powdery Mildew | Black Spot | Bacterial Canker | Shot Hole | Black Knot | Rust | Late/Early Blight | Apple Scab 🪴</p>
<canvas id="canvas" style="border:3px solid #003E1F; position: center; text-align: center; margin-left:450px;">
Your browser does not support the HTML5 canvas tag.</canvas>
</section>
</section>
</div>
<section class="footer">
<div class="icons">
<a href="#" target="_blank" class="fa fa-envelope"></a>
<a href="#" target="_blank" class="fa fa-instagram"></a>
<a href="#" target="_blank" class="fa fa-twitter"></a>
<a href="#" target="_blank" class="fa fa-youtube"></a>
<p></p>
</div>
</section>
</body>
</html>