-
Notifications
You must be signed in to change notification settings - Fork 1
/
engagerec.py
497 lines (479 loc) · 31.7 KB
/
engagerec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
import torch
import torch.nn as nn
from torch.nn.functional import log_softmax
from torch.cuda import amp
from transformers.models.UniTRec import UniTRecConfig, UniTRecModel
from textRec_datasets.engagerec_dataset import EngageRecTrainDataset, EngageRecValDataset
from torch.utils.data import DataLoader
import torch.optim as optim
from transformers import get_scheduler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
import argparse
import json
from colorama import Fore
from tqdm import tqdm
import random
from torch.utils.tensorboard import SummaryWriter
import datetime
from utils.evaluate import scoring
from utils.misc import AvgMetric, AverageRanking, write_predictions
import gc
import shutil
def parse_config():
parser = argparse.ArgumentParser(description='EngageRec')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], help='Mode')
parser.add_argument('--backbone_model', type=str, default='../backbone_models/bart-base/', choices=['../backbone_models/bart-base/', '../backbone_models/bart-large/'], help='Backbone BART model')
parser.add_argument('--encoder_seq_len', type=int, default=1024, help='Encoder sequence length')
parser.add_argument('--decoder_seq_len', type=int, default=576, help='Decoder sequence length')
parser.add_argument('--init_temperature', type=float, default=1, help='Initial temperature')
parser.add_argument('--max_temperature', type=float, default=100, help='Max temperature')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size')
parser.add_argument('--epoch', type=int, default=6, help='Epoch')
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=0, help='Weight decay')
parser.add_argument('--gradient_clip_norm', type=float, default=1, help='Gradient clip norm')
parser.add_argument('--lr_warm_up_ratio', type=float, default=0.05, help='Larning rate warm-up ratio')
parser.add_argument('--fp16', type=int, default=1, choices=[0, 1], help='Whether use fp16')
parser.add_argument('--gradient_checkpoint', type=int, default=1, choices=[0, 1], help='Whether use gradient checkpointing')
parser.add_argument('--negative_sample_num', type=int, default=14, help='Number of negative samples')
parser.add_argument('--ppl_loss', type=int, default=1, choices=[0, 1], help='Whether use perplexity contrastive loss')
parser.add_argument('--dis_loss', type=int, default=1, choices=[0, 1], help='Whether use discriminative contrastive loss')
parser.add_argument('--task', type=str, default='engageRec/Reddit-engage_technology', choices=['engageRec/Reddit-engage_technology', 'engageRec/Reddit-engage_funny', 'engageRec/Reddit-engage_todayilearned'], help='Text-based recommendation tasks')
parser.add_argument('--log_interval', type=int, default=100, help='Log interval')
parser.add_argument('--val_interval', type=int, default=10000, help='Validation interval')
parser.add_argument('--seed', type=int, default=0, help='Seed')
parser.add_argument('--test_model_path', type=str, default='', help='Test model path')
parser.add_argument('--device_id', type=int, default=0, help='Device ID of GPU')
parser.add_argument('--local_rank', type=int, default=-1, help='Local rank')
parser.add_argument('--encoder_local_attention_layers', type=int, default=3, choices=[i for i in range(7)], help='Experimental: encoder local attention layers')
parser.add_argument('--average_ranking', type=str, default='normalized', choices=['ordinal', 'normalized', 'harmonic'], help='Ranking method to average perplexity and discriminative scores')
args = parser.parse_args()
assert os.path.exists(args.backbone_model) or args.mode != 'train', 'Backbone BART does not exist at ' + args.backbone_model
args.ppl_loss = bool(args.ppl_loss)
args.dis_loss = bool(args.dis_loss)
AverageRanking.set_average_ranking_method(args.average_ranking)
args.timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
if args.mode == 'train':
args.fp16 = bool(args.fp16)
args.gradient_checkpoint = bool(args.gradient_checkpoint)
args.ppl_eval = args.ppl_loss
args.dis_eval = args.dis_loss
if args.local_rank in [-1, 0]:
args.log_dir = os.path.join('logs', args.task, args.timestamp)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
args.model_dir = os.path.join('ckpt_models', args.task, args.timestamp)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
args.prediction_dir = os.path.join('predictions', args.task, args.timestamp)
if not os.path.exists(args.prediction_dir):
os.makedirs(args.prediction_dir)
args.best_model_dir = os.path.join('best_model', args.task, args.timestamp)
if not os.path.exists(args.best_model_dir):
os.makedirs(args.best_model_dir)
else:
assert os.path.exists(args.test_model_path), 'Test model not exists: ' + args.test_model_path
with open(os.path.join(args.test_model_path, 'args.json'), 'r', encoding='utf-8') as f:
config = json.load(f)
args.ppl_eval = config['ppl_loss']
args.dis_eval = config['dis_loss']
assert args.ppl_loss or args.dis_loss, 'At least one type of [ppl_loss, dis_loss] must be specified'
assert args.ppl_eval or args.dis_eval, 'At least one type of [ppl_eval, dis_eval] must be specified'
assert torch.cuda.is_available()
if args.local_rank == -1:
torch.cuda.set_device(args.device_id)
else:
torch.cuda.set_device(torch.device('cuda:{}'.format(args.local_rank)))
os.environ['MASTER_ADDR'] = 'localhost'
dist.init_process_group(backend='nccl', timeout=datetime.timedelta(0, 14400))
if args.local_rank == 0:
for i in range(1, dist.get_world_size()):
with open('%s-%d.tmp' % (os.environ['MASTER_PORT'], i), 'w', encoding='utf-8') as f:
f.write(args.timestamp)
dist.barrier()
if args.local_rank > 0:
tmp_file = '%s-%d.tmp' % (os.environ['MASTER_PORT'], args.local_rank)
with open(tmp_file, 'r', encoding='utf-8') as f:
args.timestamp = f.read().strip()
os.remove(tmp_file)
if args.mode == 'train':
args.prediction_dir = os.path.join('predictions', args.task, args.timestamp)
args.best_model_dir = os.path.join('best_model', args.task, args.timestamp)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
if args.local_rank in [-1, 0]:
attribute_dict = dict(vars(args))
print(Fore.RED + '*' * 32 + ' UniTRec ' + '*' * 32)
for attribute in attribute_dict:
print(attribute + ' : ' + str(attribute_dict[attribute]))
print('*' * 32 + ' UniTRec ' + '*' * 32 + Fore.RESET)
return args
def build_UniTRec_model(args):
config = UniTRecConfig.from_pretrained(args.backbone_model)
config.gradient_checkpoint = args.gradient_checkpoint
config.encoder_seq_len = args.encoder_seq_len
config.decoder_seq_len = args.decoder_seq_len
config.dropout = 0
config.activation_dropout = 0
config.attention_dropout = 0
config.init_temperature = args.init_temperature
config.max_temperature = args.max_temperature
config.encoder_local_attention_layers = args.encoder_local_attention_layers # Experimental
UniTRec = UniTRecModel(config=config, dis_scoring=args.dis_loss, ppl_scoring=args.ppl_loss)
UniTRec.load_bart(args.backbone_model)
if args.gradient_checkpoint:
UniTRec.gradient_checkpointing_enable()
return config, UniTRec.cuda()
def detect_invalid_gradient(model):
for p in model.parameters():
if p.requires_grad and (torch.isinf(p.grad).any() or torch.isnan(p.grad).any()):
model.zero_grad()
return
def train(args):
config, model = build_UniTRec_model(args)
if args.local_rank != -1:
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
train_dataset = EngageRecTrainDataset(args)
train_dataset.negative_sampling(epoch=1)
if args.local_rank == -1:
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_dataset = EngageRecValDataset(args, mode='dev')
test_dataset = EngageRecValDataset(args, mode='test')
else:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_sampler)
val_dataset = EngageRecValDataset(args, mode='dev', rank=args.local_rank, world_size=dist.get_world_size())
test_dataset = EngageRecValDataset(args, mode='test', rank=args.local_rank, world_size=dist.get_world_size())
assert (model.module.IGNORE_TOKEN_ID == train_dataset.IGNORE_TOKEN_ID if hasattr(model, 'module') else model.IGNORE_TOKEN_ID == train_dataset.IGNORE_TOKEN_ID)
no_decay = ['bias', 'layer_norm.weight', 'layernorm_embedding.weight', 'fc.weight', 'temperature']
for n, p in model.named_parameters():
if 'bias' in n.lower() or 'norm' in n.lower() or len(p.squeeze().shape) == 1:
assert any(nd in n.lower() for nd in no_decay), 'Parameter decay error : ' + n
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n.lower() for nd in no_decay) and p.requires_grad], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n.lower() for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0}
]
optimizer = optim.AdamW(optimizer_grouped_parameters, lr=args.lr, eps=1e-7, betas=(0.9, 0.98))
num_training_steps = len(train_dataloader) * args.epoch
num_warmup_steps = int(num_training_steps * args.lr_warm_up_ratio)
lr_scheduler = get_scheduler(name='cosine', optimizer=optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
if args.local_rank in [-1, 0]:
print('Training steps :', num_training_steps)
writer = SummaryWriter(log_dir=args.log_dir, filename_suffix='.log')
if args.fp16:
scaler = amp.GradScaler()
iteration, iteration_ppl_loss, iteration_dis_loss, iteration_loss = 0, 0, 0, 0
best_val_result = AvgMetric(0, 0, 0, 0, 0, 0, 0)
best_val_epoch = 0
for epoch in tqdm(range(1, args.epoch + 1)) if args.local_rank in [-1, 0] else range(1, args.epoch + 1):
model.train()
train_dataset.negative_sampling(epoch=epoch)
if args.local_rank == -1:
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
else:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_sampler.set_epoch(epoch)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_sampler)
epoch_ppl_loss, epoch_dis_loss, epoch_loss = 0, 0, 0
for history_input_ids, history_segment_ids, history_global_attention_mask, history_local_position_ids, candidate_input_ids, candidate_cls_indices, targets in train_dataloader:
history_input_ids = history_input_ids.cuda(non_blocking=True)
history_segment_ids = history_segment_ids.cuda(non_blocking=True)
history_global_attention_mask = history_global_attention_mask.cuda(non_blocking=True)
history_local_position_ids = history_local_position_ids.cuda(non_blocking=True)
candidate_input_ids = candidate_input_ids.cuda(non_blocking=True)
candidate_cls_indices = candidate_cls_indices.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if args.fp16:
with amp.autocast():
ppl_scores, dis_scores = model(history_input_ids, history_segment_ids, history_global_attention_mask, history_local_position_ids, candidate_input_ids, candidate_cls_indices, targets)
if args.ppl_loss:
ppl_loss = -log_softmax(ppl_scores, dim=1).select(dim=1, index=0).mean()
if args.dis_loss:
dis_loss = -log_softmax(dis_scores, dim=1).select(dim=1, index=0).mean()
if args.ppl_loss and not args.dis_loss:
loss = ppl_loss
elif not args.ppl_loss and args.dis_loss:
loss = dis_loss
else:
loss = ppl_loss + dis_loss
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
detect_invalid_gradient(model)
nn.utils.clip_grad_norm_(model.parameters(), args.gradient_clip_norm)
scaler.step(optimizer)
scaler.update()
else:
ppl_scores, dis_scores = model(history_input_ids, history_segment_ids, history_global_attention_mask, history_local_position_ids, candidate_input_ids, candidate_cls_indices, targets)
if args.ppl_loss:
ppl_loss = -log_softmax(ppl_scores, dim=1).select(dim=1, index=0).mean()
if args.dis_loss:
dis_loss = -log_softmax(dis_scores, dim=1).select(dim=1, index=0).mean()
if args.ppl_loss and not args.dis_loss:
loss = ppl_loss
elif not args.ppl_loss and args.dis_loss:
loss = dis_loss
else:
loss = ppl_loss + dis_loss
loss.backward()
detect_invalid_gradient(model)
nn.utils.clip_grad_norm_(model.parameters(), args.gradient_clip_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
_ppl_loss = ppl_loss.item() if args.ppl_loss else 0
_dis_loss = dis_loss.item() if args.dis_loss else 0
_loss = loss.item()
epoch_ppl_loss += _ppl_loss
epoch_dis_loss += _dis_loss
epoch_loss += _loss
iteration_ppl_loss += _ppl_loss
iteration_dis_loss += _dis_loss
iteration_loss += _loss
iteration += 1
if iteration % args.log_interval == 0:
iteration_loss /= args.log_interval
iteration_ppl_loss /= args.log_interval
iteration_dis_loss /= args.log_interval
if args.local_rank in [-1, 0]:
temperature = model.module.temperature.item() if hasattr(model, 'module') else model.temperature.item()
if args.ppl_loss and not args.dis_loss:
print('Iteration : %d\t\tLR = %.6f\t\tTemperature = %.4f\t\tLoss = %.2f\t\tppl_loss = %.2f' % (iteration, lr_scheduler.get_last_lr()[0], temperature, iteration_loss, iteration_ppl_loss))
elif not args.ppl_loss and args.dis_loss:
print('Iteration : %d\t\tLR = %.6f\t\tTemperature = %.4f\t\tLoss = %.2f\t\tdis_loss = %.2f' % (iteration, lr_scheduler.get_last_lr()[0], temperature, iteration_loss, iteration_dis_loss))
else:
print('Iteration : %d\t\tLR = %.6f\t\tTemperature = %.4f\t\tLoss = %.2f\t\tppl_loss = %.2f\t\tdis_loss = %.2f' % (iteration, lr_scheduler.get_last_lr()[0], temperature, iteration_loss, iteration_ppl_loss, iteration_dis_loss))
writer.add_scalar('Iteration Loss', iteration_loss, iteration)
if args.ppl_loss:
writer.add_scalar('Iteration ppl_loss', iteration_ppl_loss, iteration)
if args.dis_loss:
writer.add_scalar('Iteration dis_loss', iteration_dis_loss, iteration)
writer.add_scalar('Iteration Temperature', temperature, iteration)
iteration_ppl_loss, iteration_dis_loss, iteration_loss = 0, 0, 0
if iteration % args.val_interval == 0:
val_model = model.module if hasattr(model, 'module') else model
result_file = os.path.join(args.prediction_dir, 'iteration-%d.txt' % iteration)
if args.local_rank == -1:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = inference(args, val_model, val_dataset, result_file, return_scores=True)
else: # distributed inference and aggregation results
inference(args, val_model, val_dataset, result_file + '-' + str(args.local_rank), return_scores=False)
dist.barrier()
if args.local_rank == 0:
with open(result_file, 'w', encoding='utf-8') as f:
index = 0
for i in range(dist.get_world_size()):
with open(result_file + '-' + str(i), 'r', encoding='utf-8') as f_:
for line in f_:
if len(line.strip()) > 0:
index += 1
result_line = ('' if index == 1 else '\n') + str(index) + line[line.find(' '):].strip('\n')
f.write(result_line)
with open(val_dataset.truth_file, 'r', encoding='utf-8') as truth_f, open(result_file, 'r', encoding='utf-8') as result_f:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = scoring(truth_f, result_f)
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = auc * 100, mrr * 100, ndcg5 * 100, ndcg10 * 100, hr1 * 100, hr5 * 100, hr10 * 100 # return percentage scores
if args.local_rank in [-1, 0]:
print('Validation iteration : %d\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (iteration, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10))
writer.add_scalar('Iteration AUC', auc, iteration)
writer.add_scalar('Iteration MRR', mrr, iteration)
writer.add_scalar('Iteration nDCG@5', ndcg5, iteration)
writer.add_scalar('Iteration nDCG@10', ndcg10, iteration)
writer.add_scalar('Iteration HR@1', hr1, iteration)
writer.add_scalar('Iteration HR@5', hr5, iteration)
writer.add_scalar('Iteration HR@10', hr10, iteration)
val_model.save_pretrained(os.path.join(args.model_dir, 'iteration-' + str(iteration)))
config.save_pretrained(os.path.join(args.model_dir, 'iteration-' + str(iteration)))
with open(os.path.join(args.model_dir, 'iteration-' + str(iteration), 'args.json'), 'w', encoding='utf-8') as f:
json.dump(dict(vars(args)), f)
gc.collect()
torch.cuda.empty_cache()
model.train()
epoch_loss /= len(train_dataloader)
epoch_ppl_loss /= len(train_dataloader)
epoch_dis_loss /= len(train_dataloader)
val_model = model.module if hasattr(model, 'module') else model
result_file = os.path.join(args.prediction_dir, 'epoch-%d.txt' % epoch)
if args.local_rank == -1:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = inference(args, val_model, val_dataset, result_file, return_scores=True)
else: # distributed inference and aggregation results
inference(args, val_model, val_dataset, result_file + '-' + str(args.local_rank), return_scores=False)
dist.barrier()
if args.local_rank == 0:
with open(result_file, 'w', encoding='utf-8') as f:
index = 0
for i in range(dist.get_world_size()):
with open(result_file + '-' + str(i), 'r', encoding='utf-8') as f_:
for line in f_:
if len(line.strip()) > 0:
index += 1
result_line = ('' if index == 1 else '\n') + str(index) + line[line.find(' '):].strip('\n')
f.write(result_line)
with open(val_dataset.truth_file, 'r', encoding='utf-8') as truth_f, open(result_file, 'r', encoding='utf-8') as result_f:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = scoring(truth_f, result_f)
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = auc * 100, mrr * 100, ndcg5 * 100, ndcg10 * 100, hr1 * 100, hr5 * 100, hr10 * 100 # return percentage scores
if args.local_rank in [-1, 0]:
if args.ppl_loss and not args.dis_loss:
print('Epoch : %d\t\tLoss = %.2f\t\tppl_loss = %.2f' % (epoch, epoch_loss, epoch_ppl_loss))
elif not args.ppl_loss and args.dis_loss:
print('Epoch : %d\t\tLoss = %.2f\t\tdis_loss = %.2f' % (epoch, epoch_loss, epoch_dis_loss))
else:
print('Epoch : %d\t\tLoss = %.2f\t\tppl_loss = %.2f\t\tdis_loss = %.2f' % (epoch, epoch_loss, epoch_ppl_loss, epoch_dis_loss))
writer.add_scalar('Epoch Loss', epoch_loss, epoch)
if args.ppl_loss:
writer.add_scalar('Epoch ppl_loss', epoch_ppl_loss, epoch)
if args.dis_loss:
writer.add_scalar('Epoch dis_loss', epoch_dis_loss, epoch)
val_result = AvgMetric(auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10)
if val_result > best_val_result:
best_val_result = val_result
best_val_epoch = epoch
print('Validation epoch : %d\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (epoch, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10))
print(Fore.BLUE + ('Best epoch : %d\nBest result = %s' % (best_val_epoch, str(best_val_result))) + Fore.RESET)
writer.add_scalar('Epoch AUC', auc, epoch)
writer.add_scalar('Epoch MRR', mrr, epoch)
writer.add_scalar('Epoch nDCG@5', ndcg5, epoch)
writer.add_scalar('Epoch nDCG@10', ndcg10, epoch)
writer.add_scalar('Epoch HR@1', hr1, epoch)
writer.add_scalar('Epoch HR@5', hr5, epoch)
writer.add_scalar('Epoch HR@10', hr10, epoch)
val_model.save_pretrained(os.path.join(args.model_dir, 'epoch-' + str(epoch)))
config.save_pretrained(os.path.join(args.model_dir, 'epoch-' + str(epoch)))
with open(os.path.join(args.model_dir, 'epoch-' + str(epoch), 'args.json'), 'w', encoding='utf-8') as f:
json.dump(dict(vars(args)), f)
with open(os.path.join(args.log_dir, 'dev-result.txt'), 'w', encoding='utf-8') as f:
f.write(str(best_val_result))
gc.collect()
torch.cuda.empty_cache()
if args.local_rank in [-1, 0]:
shutil.copy(os.path.join(args.model_dir, 'epoch-' + str(best_val_epoch), 'args.json'), os.path.join(args.best_model_dir, 'args.json'))
shutil.copy(os.path.join(args.model_dir, 'epoch-' + str(best_val_epoch), 'config.json'), os.path.join(args.best_model_dir, 'config.json'))
shutil.copy(os.path.join(args.model_dir, 'epoch-' + str(best_val_epoch), 'pytorch_model.bin'), os.path.join(args.best_model_dir, 'pytorch_model.bin'))
writer.close()
model = None
del model
gc.collect()
torch.cuda.empty_cache()
if args.local_rank != -1:
dist.barrier()
config = UniTRecConfig.from_pretrained(args.best_model_dir)
val_model = UniTRecModel.from_pretrained(args.best_model_dir, config=config, dis_scoring=args.dis_loss, ppl_scoring=args.ppl_loss).cuda()
result_file = os.path.join(args.prediction_dir, 'prediction.txt')
if args.local_rank == -1:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = inference(args, val_model, test_dataset, result_file, return_scores=True)
print(Fore.BLUE + ('%s\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (args.task, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10)) + Fore.RESET)
else: # distributed inference and aggregation results
inference(args, val_model, test_dataset, result_file + '-' + str(args.local_rank), return_scores=False)
dist.barrier()
if args.local_rank == 0:
with open(result_file, 'w', encoding='utf-8') as f:
index = 0
for i in range(dist.get_world_size()):
with open(result_file + '-' + str(i), 'r', encoding='utf-8') as f_:
for line in f_:
if len(line.strip()) > 0:
index += 1
result_line = ('' if index == 1 else '\n') + str(index) + line[line.find(' '):].strip('\n')
f.write(result_line)
with open(test_dataset.truth_file, 'r', encoding='utf-8') as truth_f, open(result_file, 'r', encoding='utf-8') as result_f:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = scoring(truth_f, result_f)
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = auc * 100, mrr * 100, ndcg5 * 100, ndcg10 * 100, hr1 * 100, hr5 * 100, hr10 * 100 # return percentage scores
print(Fore.BLUE + ('%s\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (args.task, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10)) + Fore.RESET)
if args.local_rank in [-1, 0]:
with open(os.path.join(args.log_dir, 'test-result.txt'), 'w', encoding='utf-8') as f:
f.write('Reddit-engage Test\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10))
def inference(args, model, val_dataset, result_file, return_scores):
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False) # batch_size must be 1 and shuffle must be False
assert len(val_dataloader) % ((val_dataset.candidate_num - 1) // val_dataset.VAL_ENGAGE_SEGMENT_NUM + 1) == 0
val_num = len(val_dataloader) // ((val_dataset.candidate_num - 1) // val_dataset.VAL_ENGAGE_SEGMENT_NUM + 1)
val_indices = val_dataset.indices
assert model.IGNORE_TOKEN_ID == val_dataset.IGNORE_TOKEN_ID
assert return_scores == (args.local_rank == -1)
if args.ppl_eval != args.dis_eval:
scores = torch.zeros([len(val_indices)]).cuda()
else:
ppl_scores = torch.zeros([len(val_indices)]).cuda()
dis_scores = torch.zeros([len(val_indices)]).cuda()
index = 0
model.eval()
with torch.no_grad():
for history_input_ids, history_segment_ids, history_global_attention_mask, history_local_position_ids, candidate_input_ids, candidate_cls_indices, targets in val_dataloader:
history_input_ids = history_input_ids.cuda(non_blocking=True)
history_segment_ids = history_segment_ids.cuda(non_blocking=True)
history_global_attention_mask = history_global_attention_mask.cuda(non_blocking=True)
history_local_position_ids = history_local_position_ids.cuda(non_blocking=True)
candidate_input_ids = candidate_input_ids.squeeze(dim=0).cuda(non_blocking=True)
candidate_cls_indices = candidate_cls_indices.squeeze(dim=0).cuda(non_blocking=True)
targets = targets.squeeze(dim=0).cuda(non_blocking=True)
candidate_num = candidate_input_ids.size(0)
_ppl_scores, _dis_scores = model(history_input_ids, history_segment_ids, history_global_attention_mask, history_local_position_ids, candidate_input_ids, candidate_cls_indices, targets)
if args.ppl_eval and not args.dis_eval:
scores[index: index+candidate_num] = _ppl_scores
elif not args.ppl_eval and args.dis_eval:
scores[index: index+candidate_num] = _dis_scores
else:
ppl_scores[index: index+candidate_num] = _ppl_scores
dis_scores[index: index+candidate_num] = _dis_scores
index += candidate_num
if args.ppl_eval != args.dis_eval:
scores = scores.tolist()
assert index == len(scores)
sub_scores = [[] for _ in range(val_num)]
for i, index in enumerate(val_indices):
sub_scores[index].append([scores[i], len(sub_scores[index])])
for i in range(val_num):
sub_scores[i].sort(key=lambda x: x[0], reverse=True)
rankings = [[0 for _ in range(len(sub_score))] for sub_score in sub_scores]
for i, sub_score in enumerate(sub_scores):
for j in range(len(sub_score)):
rankings[i][sub_score[j][1]] = j + 1
else:
ppl_scores = ppl_scores.tolist()
dis_scores = dis_scores.tolist()
assert index == len(ppl_scores) and index == len(dis_scores)
sub_ppl_scores = [[] for _ in range(val_num)]
sub_dis_scores = [[] for _ in range(val_num)]
for i, index in enumerate(val_indices):
sub_ppl_scores[index].append(ppl_scores[i])
sub_dis_scores[index].append(dis_scores[i])
rankings = [AverageRanking.rank(sub_ppl_scores[i], sub_dis_scores[i]) for i in range(val_num)]
write_predictions(result_file, rankings)
if return_scores:
with open(val_dataset.truth_file, 'r', encoding='utf-8') as truth_f, open(result_file, 'r', encoding='utf-8') as result_f:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = scoring(truth_f, result_f)
return auc * 100, mrr * 100, ndcg5 * 100, ndcg10 * 100, hr1 * 100, hr5 * 100, hr10 * 100 # return percentage scores
def test(args):
config = UniTRecConfig.from_pretrained(args.test_model_path)
model = UniTRecModel.from_pretrained(args.test_model_path, config=config, dis_scoring=args.dis_loss, ppl_scoring=args.ppl_loss).cuda()
result_file = os.path.join(args.test_model_path.strip('/').replace('ckpt_models/', 'predictions/') + '-' + args.timestamp + '-test.txt')
if args.local_rank == -1:
val_dataset = EngageRecValDataset(args, mode='test')
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = inference(args, model, val_dataset, result_file, return_scores=True)
print('Test : %s\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (args.test_model_path, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10))
else:
val_dataset = EngageRecValDataset(args, mode='test', rank=args.local_rank, world_size=dist.get_world_size())
inference(args, model, val_dataset, result_file + '-' + str(args.local_rank), return_scores=False)
dist.barrier()
if args.local_rank == 0:
with open(result_file, 'w', encoding='utf-8') as f:
index = 0
for i in range(dist.get_world_size()):
with open(result_file + '-' + str(i), 'r', encoding='utf-8') as f_:
for line in f_:
if len(line.strip()) > 0:
index += 1
result_line = ('' if index == 1 else '\n') + str(index) + line[line.find(' '):].strip('\n')
f.write(result_line)
with open(val_dataset.truth_file, 'r', encoding='utf-8') as truth_f, open(result_file, 'r', encoding='utf-8') as result_f:
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = scoring(truth_f, result_f)
auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10 = auc * 100, mrr * 100, ndcg5 * 100, ndcg10 * 100, hr1 * 100, hr5 * 100, hr10 * 100 # return percentage scores
print('Test : %s\nAUC = %.2f\nMRR = %.2f\nnDCG@5 = %.2f\nnDCG@10 = %.2f\nHR@1 = %.2f\nHR@5 = %.2f\nHR@10 = %.2f' % (args.test_model_path, auc, mrr, ndcg5, ndcg10, hr1, hr5, hr10))
if __name__ == '__main__':
args = parse_config()
if args.mode == 'train':
train(args)
elif args.mode == 'test':
test(args)
else:
raise Exception('Unexpected mode : ' + args.mode)