-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluate.py
115 lines (89 loc) · 3.41 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
import sys, os, os.path
import numpy as np
import json
from sklearn.metrics import roc_auc_score
def dcg_score(y_true, y_score, k=10):
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order[:k])
gains = 2 ** y_true - 1
discounts = np.log2(np.arange(len(y_true)) + 2)
return np.sum(gains / discounts)
def ndcg_score(y_true, y_score, k=10):
best = dcg_score(y_true, y_true, k)
actual = dcg_score(y_true, y_score, k)
return actual / best
def mrr_score(y_true, y_score):
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order)
rr_score = y_true / (np.arange(len(y_true)) + 1)
return np.sum(rr_score) / np.sum(y_true)
def parse_line(l):
impid, ranks = l.strip('\n').split()
ranks = json.loads(ranks)
return impid, ranks
def scoring(truth_f, sub_f):
aucs = []
mrrs = []
ndcg5s = []
ndcg10s = []
line_index = 1
for lt in truth_f:
ls = sub_f.readline()
impid, labels = parse_line(lt)
# ignore masked impressions
if labels == []:
continue
if ls == '':
# empty line: filled with 0 ranks
sub_impid = impid
sub_ranks = [1] * len(labels)
else:
try:
sub_impid, sub_ranks = parse_line(ls)
except:
raise ValueError("line-{}: Invalid Input Format!".format(line_index))
if sub_impid != impid:
raise ValueError("line-{}: Inconsistent Impression Id {} and {}".format(
line_index,
sub_impid,
impid
))
lt_len = float(len(labels))
y_true = np.array(labels,dtype='float32')
y_score = []
for rank in sub_ranks:
score_rslt = 1./rank
if score_rslt < 0 or score_rslt > 1:
raise ValueError("Line-{}: score_rslt should be int from 0 to {}".format(
line_index,
lt_len
))
y_score.append(score_rslt)
auc = roc_auc_score(y_true,y_score)
mrr = mrr_score(y_true,y_score)
ndcg5 = ndcg_score(y_true,y_score,5)
ndcg10 = ndcg_score(y_true,y_score,10)
aucs.append(auc)
mrrs.append(mrr)
ndcg5s.append(ndcg5)
ndcg10s.append(ndcg10)
line_index += 1
return np.mean(aucs), np.mean(mrrs), np.mean(ndcg5s), np.mean(ndcg10s)
if __name__ == '__main__':
input_dir = sys.argv[1]
output_dir = sys.argv[2]
submit_dir = os.path.join(input_dir, 'res')
truth_dir = os.path.join(input_dir, 'ref')
if not os.path.isdir(submit_dir):
print("%s doesn't exist" % submit_dir)
if os.path.isdir(submit_dir) and os.path.isdir(truth_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_filename = os.path.join(output_dir, 'scores.txt')
output_file = open(output_filename, 'w')
truth_file = open(os.path.join(truth_dir, "truth.txt"), 'r')
submission_answer_file = open(os.path.join(submit_dir, "prediction.txt"), 'r')
auc, mrr, ndcg, ndcg10 = scoring(truth_file, submission_answer_file)
output_file.write("AUC:{:.4f}\nMRR:{:.4f}\nnDCG@5:{:.4f}\nnDCG@10:{:.4f}".format(auc, mrr, ndcg, ndcg10))
output_file.close()