-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathcommand.sh
321 lines (280 loc) · 13.8 KB
/
command.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
########## demo ##########
#### LLM + trained connector
CUDA_VISIBLE_DEVICES=6,7 python video_audio_demo.py \
--model_path outputs/bunny_video_audio_0717/llava-s1-pretrain_mlp_video/ \
--model_base /mnt/shared/data1/lhj/model_weights/Mixtral-8x7B_modVocab/mg2hg \
--image_path asset/vita_log.png \
--model_type mixtral-8x7b \
--conv_mode mixtral_zh \
--question "请描述这张图片。"
#### trained LLM + trained connector
## text query
#mixtral
CUDA_VISIBLE_DEVICES=0,1 python video_audio_demo.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0823/llava-s2-pretrain_video/0823ckpt5400 \
--image_path asset/vita_log2.png \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--question "请描述这张图片。" \
#nemo
CUDA_VISIBLE_DEVICES=0 python video_audio_demo.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0917/llava-s2-pretrain_video/checkpoint-3200 \
--image_path asset/vita_log2.png \
--model_type nemo \
--conv_mode nemo \
--question "请描述这张图片。" \
#qwen
CUDA_VISIBLE_DEVICES=2 python video_audio_demo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_ovsi \
--image_path asset/vita_log2.png \
--model_type qwen2p5_instruct \
--conv_mode qwen2p5_instruct \
--question "请描述这张图片。"
#qwen fo
CUDA_VISIBLE_DEVICES=6 python video_audio_demo_nemo_fo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_neg/checkpoint-6500 \
--image_path ../Video-MLLM/icon.png \
--model_type qwen2p5_fo_instruct \
--conv_mode qwen2p5_instruct \
--question "图片中的人穿着什么衣服?"
## audio query
#mixtral
CUDA_VISIBLE_DEVICES=0,1 python video_audio_demo.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0823/llava-s2-pretrain_video/0823ckpt5400 \
--image_path asset/vita_log2.png \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path asset/q1.wav
#nemo
CUDA_VISIBLE_DEVICES=0 python video_audio_demo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_0917/llava-s2-pretrain_video/checkpoint-3200 \
--image_path asset/vita_log2.png \
--model_type nemo \
--conv_mode nemo \
--audio_path asset/q1.wav
#qwen
CUDA_VISIBLE_DEVICES=4 python video_audio_demo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_neg/1021s3neg_ckpt500 \
--image_path asset/vita_log2.png \
--model_type qwen2p5_instruct \
--conv_mode qwen2p5_instruct \
--audio_path asset/q1.wav
#qwen fo
CUDA_VISIBLE_DEVICES=1 python video_audio_demo_nemo_fo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_neg/checkpoint-2000 \
--image_path asset/vita_log2.png \
--model_type qwen2p5_fo_instruct \
--conv_mode qwen2p5_instruct \
--audio_path asset/q1.wav
# vllm accelerate
CUDA_VISIBLE_DEVICES=4,5 python video_audio_demo_vllm.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0823/llava-s2-pretrain_video/0823ckpt5400 \
--image_path share.jpg \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--question "请描述这张图片。"
#### VLMEvalKit
## judging
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /mnt/cfs2/lhj/model_weights/Qwen2.5-14B-Instruct --server-port 23333
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/Qwen1.5-1.8B-Chat --server-port 23333
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/Qwen1.5-7B-Chat --server-port 23333
CUDA_VISIBLE_DEVICES=3 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/vicuna-7b-v1.5 --server-port 23333
CUDA_VISIBLE_DEVICES=3 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/qwen2-7b-chat --server-port 23333
CUDA_VISIBLE_DEVICES=3 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/internlm2_5-7b-chat --server-port 23333
CUDA_VISIBLE_DEVICES=3 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/internlm2-chat-1_8b --server-port 23333
CUDA_VISIBLE_DEVICES=3,4 lmdeploy serve api_server /mnt/cfs/lhj/model_weights/Mixtral-8x7B_modVocab/mg2hg --server-port 23333
## VITA
CUDA_VISIBLE_DEVICES=1 python run.py --data MMBench_TEST_EN_V11 --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=2 python run.py --data MMBench_TEST_CN_V11 --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=1 python run.py --data MMStar --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=2 python run.py --data MMMU_DEV_VAL --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=3 python run.py --data MathVista_MINI --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=4 python run.py --data HallusionBench --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=5 python run.py --data AI2D_TEST --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=1 python run.py --data MMVet --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=1 python run.py --data OCRBench --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=5 python run.py --data MME --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=6,7 python run.py --data MME-RealWorld --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=3 python run.py --data MathVista_MINI MMStar MMMU_DEV_VAL HallusionBench AI2D_TEST OCRBench MME --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=3 python run.py --data AI2D_TEST OCRBench MME --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=4 python run.py --data MMBench_TEST_EN_V11 --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=5 python run.py --data MMBench_TEST_CN_V11 --model vita_qwen2 --verbose
CUDA_VISIBLE_DEVICES=0 python run.py --data MMStar MMMU_DEV_VAL MathVista_MINI HallusionBench AI2D_TEST OCRBench MMVet MME --model vita --verbose
## llava
CUDA_VISIBLE_DEVICES=1 python run.py --data MMStar MMMU_DEV_VAL MathVista_MINI --model llava_video_qwen2_7b --verbose
CUDA_VISIBLE_DEVICES=2 python run.py --data MMBench_DEV_EN_V11 --model llava_video_qwen2_7b --verbose
CUDA_VISIBLE_DEVICES=3 python run.py --data MMBench_DEV_CN_V11 --model llava_video_qwen2_7b --verbose
CUDA_VISIBLE_DEVICES=4 python run.py --data HallusionBench OCRBench --model llava_video_qwen2_7b --verbose
CUDA_VISIBLE_DEVICES=5 python run.py --data AI2D_TEST --model llava_video_qwen2_7b --verbose
### videomme
VIDEO_TYPE="s,m,l"
NAMES=(lyd jyg wzh wzz zcy by dyh lfy)
for((i=0; i<${#NAMES[@]}; i++))
do
CUDA_VISIBLE_DEVICES=6 python yt_video_inference_qa_imgs.py \
--model-path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_ovsi \
--model_type qwen2p5_instruct \
--conv_mode qwen2p5_instruct \
--responsible_man ${NAMES[i]} \
--video_type $VIDEO_TYPE \
--output_dir qa_wo_sub_temp \
--video_dir /mnt/cfs/lhj/videochat2/videomme/Video-MME | tee logs/infer.log
done
wait
VIDEO_TYPE="s,m,l"
NAMES=(lyd jyg wzh wzz zcy by dyh lfy)
for((i=0; i<${#NAMES[@]}; i++))
do
CUDA_VISIBLE_DEVICES=7 python yt_video_inference_qa_imgs.py \
--model-path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_ovsi \
--model_type qwen2p5_instruct \
--conv_mode qwen2p5_instruct \
--responsible_man ${NAMES[i]} \
--video_type $VIDEO_TYPE \
--output_dir qa_w_sub_temp \
--video_dir /mnt/cfs/lhj/videochat2/videomme/Video-MME \
--use_subtitles | tee logs/infer.log
done
python parse_answer.py --video_types "s,m,l" --result_dir qa_wo_sub
### HCMME_v2
CUDA_VISIBLE_DEVICES=0,1 python video_audio_hcmme.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0823/llava-s2-pretrain_video/0823ckpt5400 \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path ./test_dialog_20240806_154218.wav
### negtive batch test
# qwen
CUDA_VISIBLE_DEVICES=1 python video_audio_demo_batch.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_neg \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type qwen2p5_instruct \
--conv_mode qwen2p5_instruct \
--audio_path asset/q2.wav
# qwen fo
CUDA_VISIBLE_DEVICES=4 python video_audio_demo_batch_fo.py \
--model_path /mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021/llava-s3-finetune_task_neg/checkpoint-1500 \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type qwen2p5_fo_instruct \
--conv_mode qwen2p5_instruct \
--audio_path asset/q2.wav
CUDA_VISIBLE_DEVICES=0,1 python video_audio_demo_batch.py \
--model_path /mnt/cfs/lhj/videomllm_ckpt/outputs/vita_video_audio_0823/llava-s2-pretrain_video/0823ckpt5400 \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path ./test_dialog_20240806_154218.wav
CUDA_VISIBLE_DEVICES=6,7 python video_audio_demo_batch_fewshot.py \
--model_path /data/haojialin/model_weigths/VITA/0821ckpt2200 \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path ./test_dialog_20240806_154218.wav
CUDA_VISIBLE_DEVICES=6,7 python video_audio_demo_batch_fewshot2.py \
--model_path /data/haojialin/model_weigths/VITA/0821ckpt2200 \
--video_path bbe247927e699fd2ece9eb61e7c8a369.mov \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path ./test_dialog_20240806_154218.wav
CUDA_VISIBLE_DEVICES=6,7 python video_audio_demo.py \
--model_path /data/haojialin/model_weigths/VITA/0818ckpt2200 \
--image_path ../Video-MLLM/icon.png \
--model_type mixtral-8x7b \
--conv_mode mixtral_two \
--audio_path ../Video-MLLM/neg_files/audios/true7.wav
#### Training
## single node
export PYTHONPATH=./
OUTPUT_DIR=/mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_debug
bash script/train/pretrain_mlp.sh ${OUTPUT_DIR}
bash script/train/finetune.sh ${OUTPUT_DIR}
bash script/train/pretrain_mlp_nemo.sh ${OUTPUT_DIR}
bash script/train/pretrain_audio_mlp_nemo.sh ${OUTPUT_DIR}
bash script/train/finetune_nemo.sh ${OUTPUT_DIR}
bash script/train/pretrain_mlp_qwen.sh ${OUTPUT_DIR}
bash script/train/pretrain_audio_mlp_qwen.sh ${OUTPUT_DIR}
bash script/train/finetune_qwen.sh ${OUTPUT_DIR}
bash script/train/finetuneTask_qwen.sh ${OUTPUT_DIR}
bash script/train/finetuneTaskNeg_qwen.sh ${OUTPUT_DIR}
bash script/train/finetuneTaskNeg_qwen_fo.sh ${OUTPUT_DIR}
## multi nodes
export PYTHONPATH=./
export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
OUTPUT_DIR=/mnt/cfs2/lhj/videomllm_ckpt/outputs/vita_video_audio_1021
bash script/train/pretrain_mlp_nodes.sh ${OUTPUT_DIR}
bash script/train/finetune_nodes.sh ${OUTPUT_DIR}
bash script/train/finetuneTask_nodes.sh ${OUTPUT_DIR}
bash script/train/pretrain_mlp_nemo_nodes.sh ${OUTPUT_DIR}
bash script/train/finetune_nemo_nodes.sh ${OUTPUT_DIR}
bash script/train/pretrain_mlp_qwen_nodes.sh ${OUTPUT_DIR}
bash script/train/pretrain_audio_mlp_qwen_nodes.sh ${OUTPUT_DIR}
bash script/train/finetune_qwen_nodes.sh ${OUTPUT_DIR}
bash script/train/finetuneTask_qwen_nodes.sh ${OUTPUT_DIR}
bash script/train/finetuneTaskNeg_qwen_nodes.sh ${OUTPUT_DIR}
bash script/train/finetuneTaskNeg_qwen_fo_nodes.sh ${OUTPUT_DIR}
### loss图
MODEL_NAME=vita_video_audio_1004
cd ${MODEL_NAME}
coscmd download -f yongdongluo/plot_loss.py ./
python plot_loss.py llava-s1-pretrain_audio_mlp/log.txt
python plot_loss.py llava-s1-pretrain_mlp_video/log_node_0.txt
python plot_loss.py llava-s2-pretrain_video/log_node_0.txt
python plot_loss.py llava-s3-finetue/log.txt
mv llava-s1-pretrain_audio_mlp/loss_plot.png llava-s1-pretrain_audio_mlp/loss_1_audio.png
mv llava-s1-pretrain_mlp_video/loss_plot.png llava-s1-pretrain_mlp_video/loss_1.png
mv llava-s2-pretrain_video/loss_plot.png llava-s2-pretrain_video/loss_2.png
mv llava-s3-finetue/loss_plot.png llava-s3-finetue/loss_3.png
coscmd upload llava-s1-pretrain_audio_mlp/loss_1_audio.png haojialin/loss_${MODEL_NAME}/
coscmd upload llava-s1-pretrain_mlp_video/loss_1.png haojialin/loss_${MODEL_NAME}/
coscmd upload llava-s2-pretrain_video/loss_2.png haojialin/loss_${MODEL_NAME}/
coscmd upload llava-s3-finetue/loss_3.png haojialin/loss_${MODEL_NAME}/
### 转移代码
tar --exclude='VITA/outputs' -cvzf VITA.tar.gz VITA
tar -tvzf VITA.tar.gz
tar -xvzf VITA.tar.gz
### 转移权重
tar --exclude='checkpoint-1000/global_step1000' -czvf checkpoint-1000.tar.gz checkpoint-1000
### 清楚残留进程
ps aux | grep 'python.*train.py' | grep -v grep | awk '{print $2}' | xargs kill -9
ps aux | grep 'python' | grep -v grep | awk '{print $2}' | xargs kill -9
#############
pip3 config set global.index-url https://mirrors.tencent.com/pypi/simple/
bash /mnt/cfs/H20/setup.sh
##docker
sudo yum update -y
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
sudo yum install -y docker-ce docker-ce-cli containerd.io
sudo systemctl start docker
sudo systemctl enable docker
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \
sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
sudo yum-config-manager --enable nvidia-container-toolkit-experimental
sudo yum install -y nvidia-container-toolkit
sudo systemctl restart docker
docker run \
-itd \
--gpus all \
--privileged --cap-add=IPC_LOCK \
--ulimit memlock=-1 --ulimit stack=67108864 \
-v /data:/data \
-v /mnt/cfs:/mnt/cfs \
-v /mnt/cfs2:/mnt/cfs2 \
--net=host \
--ipc=host \
--name=vita vita:cuda12.1-torch2.3.1
sudo docker save -o vita_image.tar vita:cuda12.1-torch2.3.1
sudo docker load -i vita_image.tar
cat /proc/self/cgroup
### tmux
tmux new -s lhj -d
tmux new -s gpu -d
tmux new -s test1 -d
tmux new -s test5 -d
tmux new -s test6 -d
tmux new -s test7 -d
tmux new -s test8 -d
tmux attach-session -t gpu
nvitop --monitor full
cd /mnt/cfs/lhj/codes/VITA;conda activate vita_nemo
tmux detach
tmux kill-session -t session_name