-
Notifications
You must be signed in to change notification settings - Fork 4
/
R_EA.py
458 lines (398 loc) · 22.3 KB
/
R_EA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os, sys, time, random, argparse
import math
from collections import namedtuple
import numpy as np, collections
from copy import deepcopy
import torch
from pathlib import Path
lib_dir = (Path(__file__).parent / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger
from procedures import Buffer_Reward_Generator
from log_utils import time_string
from nas_201_api import NASBench201API as API
from models import CellStructure, get_search_spaces
INF = 1000
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
DARTS_SPACE = ['none', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5', 'avg_pool_3x3', 'max_pool_3x3']
class Model(object):
def __init__(self):
self.arch = None # 201: CellStructure, darts: Genotype
self.accuracy = None
def __str__(self):
"""Prints a readable version of this bitstring."""
return '{:}'.format(self.arch)
def random_architecture_func_201(max_nodes, op_names):
# return a random architecture
def random_architecture():
genotypes = []
for i in range(1, max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_name = random.choice( op_names )
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return CellStructure( genotypes )
return random_architecture
def random_architecture_func_darts(op_names):
# return a random architecture
def random_architecture():
weights = [torch.rand(14, 8).cuda(), torch.rand(14, 8).cuda()]
return genotype_darts(weights, op_names)
return random_architecture
def mutate_arch_func_201(op_names):
"""Computes the architecture for a child of the given parent architecture.
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
"""
def mutate_arch_func(parent_arch):
child_arch = deepcopy( parent_arch )
node_id = random.randint(0, len(child_arch.nodes)-1)
node_info = list( child_arch.nodes[node_id] )
snode_id = random.randint(0, len(node_info)-1)
xop = random.choice( op_names )
while xop == node_info[snode_id][0]:
xop = random.choice( op_names )
node_info[snode_id] = (xop, node_info[snode_id][1])
child_arch.nodes[node_id] = tuple( node_info )
return child_arch
return mutate_arch_func
def mutate_arch_func_darts(op_names):
"""Computes the architecture for a child of the given parent architecture.
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
"""
def mutate_arch_func(parent_geno):
# parent_arch is darts genotype
# random.randint are inclusive on two sides
topology_or_op = random.randint(0, 1) # 0 for topology, 1 for op
cell_idx = random.randint(0, 1) # 0 for normal, 1 for reduce
node_idx = random.randint(0, 3)
input_idx = random.randint(0, 1)
child_geno = deepcopy( parent_geno )
if topology_or_op == 0:
# mutate topology: switch one in-connect from one edge of one node to another in-connect
input_from_idx = random.randint(0, node_idx+2-1)
if cell_idx == 0:
edge = child_geno.normal[node_idx*2+input_idx]
child_geno.normal[node_idx*2+input_idx] = (edge[0], input_from_idx)
elif cell_idx == 1:
edge = child_geno.reduce[node_idx*2+input_idx]
child_geno.reduce[node_idx*2+input_idx] = (edge[0], input_from_idx)
elif topology_or_op == 1:
if cell_idx == 0:
edge = child_geno.normal[node_idx*2+input_idx]
_op_names = list(op_names); _op_names.remove(edge[0])
xop = random.choice( _op_names )
child_geno.normal[node_idx*2+input_idx] = (xop, edge[1])
elif cell_idx == 1:
edge = child_geno.reduce[node_idx*2+input_idx]
_op_names = list(op_names); _op_names.remove(edge[0])
xop = random.choice( _op_names )
child_geno.reduce[node_idx*2+input_idx] = (xop, edge[1])
return child_geno
return mutate_arch_func
def genotype_darts(weights, search_space=DARTS_SPACE):
edge2index = {}
_steps = 4
edge_keys = []
for i in range(_steps):
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j) # indicate the edge from node-(j) to node-(i+2)
edge_keys.append(node_str)
edge2index = {key:i for i, key in enumerate(edge_keys)}
def _parse(weights):
gene = []
n = 2; start = 0
for i in range(_steps):
end = start + n
W = weights[start:end].copy()
selected_edges = []
_edge_indice = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != search_space.index('none')))[:2]
for _edge_index in _edge_indice:
_op_indice = list(range(W.shape[1]))
_op_indice.remove(search_space.index('none'))
_op_index = sorted(_op_indice, key=lambda x: -W[_edge_index][x])[0]
selected_edges.append( (search_space[_op_index], _edge_index) )
gene += selected_edges
start = end; n += 1
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(weights[0], dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(weights[1], dim=-1).cpu().numpy())
return Genotype(normal=gene_normal, normal_concat=[2, 3, 4, 5], reduce=gene_reduce, reduce_concat=[2, 3, 4, 5])
def genotype2mask_201(genotype, op_names=NAS_BENCH_201):
# genotype is CellStructure
masks = torch.ones(6, 5).cuda() * (-INF)
ops = []
for node in genotype.nodes:
for edge in node:
ops.append(op_names.index(edge[0]))
for idx, op in enumerate(ops):
masks[idx, op] = 0
return masks
def arch_distance_201(arch1, arch2, op_names=NAS_BENCH_201):
# arch is CellStructure
ops1 = []
for node in arch1.nodes:
for edge in node:
ops1.append(op_names.index(edge[0]))
ops2 = []
for node in arch2.nodes:
for edge in node:
ops2.append(op_names.index(edge[0]))
distance = 0
for op1, op2 in zip(ops1, ops2):
if op1 != op2:
distance += 1
return distance
def genotype2mask_darts(genotype, op_names=DARTS_SPACE):
masks = [torch.ones(14, 8).cuda() * (-INF), torch.ones(14, 8).cuda() * (-INF)]
for node_idx in range(4):
prev_edges = sum([_node_idx+2 for _node_idx in range(node_idx)])
edges = list(range(prev_edges, prev_edges+node_idx+2))
edges_active_normal = genotype.normal[node_idx*2:(node_idx+1)*2] # op_str: input_from
edges_active_reduce = genotype.reduce[node_idx*2:(node_idx+1)*2] # op_str: input_from
for op_str, input_from in edges_active_normal:
masks[0][input_from+prev_edges, op_names.index(op_str)] = 0
for op_str, input_from in edges_active_reduce:
masks[1][input_from+prev_edges, op_names.index(op_str)] = 0
return masks
def arch_distance_darts(genotype1, genotype2, op_names=DARTS_SPACE):
distance = 0
for node_idx in range(4):
edges_normal_1 = genotype1.normal[node_idx*2:(node_idx+1)*2] # op_str: input_from
edges_normal_2 = genotype2.normal[node_idx*2:(node_idx+1)*2] # op_str: input_from
for edge in edges_normal_1:
if edge not in edges_normal_2:
distance += 1
edges_reduce_1 = genotype1.reduce[node_idx*2:(node_idx+1)*2] # op_str: input_from
edges_reduce_2 = genotype2.reduce[node_idx*2:(node_idx+1)*2] # op_str: input_from
for edge in edges_reduce_1:
if edge not in edges_reduce_2:
distance += 1
return distance
def proxy_inference(xargs, arch, nas_bench, logger, step_current, dataname, te_reward_generator=None):
accuracy = -1 # GT accuracy of arch
reward_type = 'accuracy'
if xargs.search_space_name == 'nas-bench-201':
arch_idx = nas_bench.query_index_by_arch(arch)
archinfo = nas_bench.query_meta_info_by_index(arch_idx)
accuracy = archinfo.get_metrics(dataname, 'x-valid')['accuracy']
if step_current >= 0: logger.writer.add_scalar("accuracy/search", accuracy, step_current)
start_time = time.time()
_ = te_reward_generator.step(nas_bench.query_by_index(arch_idx).arch_str)
if len(te_reward_generator._buffers['ntk']) == 0:
reward = {'ntk': math.inf, 'region': 0, 'mse': math.inf}
else:
reward = {'ntk': -te_reward_generator._buffers['ntk'][-1], 'region': te_reward_generator._buffers['region'][-1], 'mse': -te_reward_generator._buffers['mse'][-1]}
time_spent = time.time() - start_time
if step_current >= 0:
logger.writer.add_scalar("TE/NTK", te_reward_generator._buffers['ntk'][-1], step_current)
logger.writer.add_scalar("TE/Linear_Regions", te_reward_generator._buffers['region'][-1], step_current)
logger.writer.add_scalar("TE/MSE", te_reward_generator._buffers['mse'][-1], step_current)
elif xargs.search_space_name == 'darts':
start_time = time.time()
_ = te_reward_generator.step(genotype2mask_darts(arch))
if len(te_reward_generator._buffers['ntk']) == 0:
reward = {'ntk': math.inf, 'region': 0, 'mse': math.inf}
else:
reward = {'ntk': -te_reward_generator._buffers['ntk'][-1], 'region': te_reward_generator._buffers['region'][-1], 'mse': -te_reward_generator._buffers['mse'][-1]}
if step_current >= 0:
logger.writer.add_scalar("TE/NTK", te_reward_generator._buffers['ntk'][-1], step_current)
logger.writer.add_scalar("TE/Linear_Regions", te_reward_generator._buffers['region'][-1], step_current)
logger.writer.add_scalar("TE/MSE", te_reward_generator._buffers['mse'][-1], step_current)
time_spent = time.time() - start_time
return reward, accuracy, time_spent
def __best_of_sample(samples, topk=None, sort=False):
assert len(samples) > 0
reward_keys = list(samples[0].accuracy.keys())
if len(reward_keys) == 1:
reward_type = reward_keys[0]
else:
all_rewards = {key: [] for key in reward_keys}
for sample in samples:
for key, value in sample.accuracy.items():
all_rewards[key].append(value)
for key in reward_keys:
# get changing range
if topk is None:
values = all_rewards[key]
else:
assert isinstance(topk, int)
if sort:
values = sorted(all_rewards[key], reverse=True) # descending
else:
values = all_rewards[key]
values = np.absolute(np.array(values))
all_rewards[key] = (max(values[:topk]) - min(values[:topk])) / (max(values) - min(values)) # range of change
reward_type = max(reward_keys, key=lambda i: all_rewards[i])
parent = max(samples, key=lambda i: i.accuracy[reward_type])
return parent, reward_type
def best_of_sample(samples, topk=None, sort=False):
assert len(samples) > 0
reward_keys = list(samples[0].accuracy.keys())
if len(reward_keys) == 1:
reward_type = reward_keys[0]
parent = max(samples, key=lambda i: i.accuracy[reward_type])
else:
all_rewards = {key: [] for key in reward_keys}
for sample in samples:
for key, value in sample.accuracy.items():
all_rewards[key].append(value)
for key in reward_keys:
all_rewards[key] = sorted(all_rewards[key], reverse=True) # descending
rankings = []
for sample in samples:
ranking = 0
for key in reward_keys:
ranking += all_rewards[key].index(sample.accuracy[key])
rankings.append((sample, ranking))
rankings = sorted(rankings, key=lambda i: i[1]) # ascending
parent = rankings[0][0]
reward_type = reward_keys[np.argmin([all_rewards[key].index(parent.accuracy[key]) for key in reward_keys])]
return parent, reward_type
def population_diversity(population, space_name):
distances = 0
for p1 in range(len(population)):
for p2 in range(p1+1, len(population)):
model1 = population[p1]
model2 = population[p2]
if space_name == 'nas-bench-201':
distances += arch_distance_201(model1.arch, model2.arch)
elif space_name == 'darts':
distances += arch_distance_darts(model1.arch, model2.arch)
return distances / (len(population) * (len(population) - 1) / 2)
def regularized_evolution(xargs, total_steps, step_current, sample_size, random_arch, mutate_arch, logger, PID,
history, population, nas_bench, dataname, te_reward_generator=None
):
"""Algorithm for regularized evolution (i.e. aging evolution).
Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
Classifier Architecture Search".
Args:
cycles: the number of cycles the algorithm should run for.
population_size: the number of individuals to keep in the population.
sample_size: the number of individuals that should participate in each tournament.
time_budget: the upper bound of searching cost
Returns:
history: a list of `Model` instances, representing all the models computed
during the evolution experiment.
"""
# Carry out evolution in cycles. Each cycle produces a model and removes another.
time_cost_training = 0
for _step in range(total_steps):
best_arch, _ = best_of_sample(population, topk=2, sort=True) # choose parent based on changing range out of samples
print("<< ============== JOB (PID = %d) %s ============== >>"%(PID, '/'.join(xargs.save_dir.split("/")[-5:])))
# Sample randomly chosen models from the current population.
sample = np.random.choice(list(population), size=sample_size, replace=False)
# The parent is the best model in the sample.
parent, reward_type = best_of_sample(sample, topk=2, sort=True) # choose parent based on changing range out of samples
# Create the child model and store it.
child = Model()
child.arch = mutate_arch(parent.arch)
child.accuracy, accuracy_gt, time_cost = proxy_inference(xargs, child.arch, nas_bench, logger, step_current, dataname, te_reward_generator)
time_cost_training += time_cost
population.append(child)
history.append(child)
# Remove the oldest model.
population.popleft()
step_current += 1
logger.writer.add_scalar("evolution/population_diversity", population_diversity(population, xargs.search_space_name), step_current)
best_arch, best_type = best_of_sample(population, topk=2, sort=True) # choose parent based on changing range out of samples
logger.log('step [{:3d}] : best of populuation {:} type={:} : {:}'.format(_step, best_arch.accuracy[best_type], best_type, best_arch.arch))
if xargs.search_space_name == 'nas-bench-201':
logger.log('step [{:3d}] => accuracy of population {}'.format(_step, nas_bench.query_meta_info_by_index(nas_bench.query_index_by_arch(best_arch.arch)).get_metrics(dataname, 'x-valid')['accuracy']))
logger.writer.add_scalar("accuracy/derive", nas_bench.query_meta_info_by_index(nas_bench.query_index_by_arch(best_arch.arch)).get_metrics(dataname, 'x-valid')['accuracy'], step_current)
return population, history, step_current, time_cost_training
def main(xargs, nas_bench):
PID = os.getpid()
if xargs.timestamp == 'none':
xargs.timestamp = "{:}".format(time.strftime('%h-%d-%C_%H-%M-%s', time.gmtime(time.time())))
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
xargs.init = 'kaiming_norm'
xargs.te_buffer_size = max(xargs.te_buffer_size, xargs.ea_population_size)
xargs.save_dir = xargs.save_dir + \
"/sample%d-population%d-%s-steps%d-ntk.regions.mse-buffer%d-batch%d-repeat%d"%(xargs.ea_sample_size, xargs.ea_population_size, xargs.init, xargs.total_steps, xargs.te_buffer_size, xargs.batch_size, xargs.repeat) + \
"/{:}/seed{:}".format(xargs.timestamp, xargs.rand_seed)
logger = prepare_logger(xargs)
if xargs.dataset == 'cifar10':
dataname = 'cifar10-valid'
else:
dataname = xargs.dataset
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}'.format(xargs.dataset, len(train_data), len(valid_data)))
logger.log('||||||| {:10s} |||||||'.format(xargs.dataset))
search_space = get_search_spaces('cell', xargs.search_space_name)
if xargs.search_space_name == 'nas-bench-201':
random_arch = random_architecture_func_201(xargs.max_nodes, search_space)
mutate_arch = mutate_arch_func_201(search_space)
elif xargs.search_space_name == 'darts':
random_arch = random_architecture_func_darts(search_space)
mutate_arch = mutate_arch_func_darts(search_space)
x_start_time = time.time()
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
logger.log('-'*30 + ' start searching')
start_time = time.time()
step_current = 0 # for tensorboard
te_reward_generator = Buffer_Reward_Generator(xargs, xargs.search_space_name, search_space, train_data, valid_data, class_num)
time_cost_training = 0
########### Evolution Preparation
population = collections.deque()
history = [] # Not used, history of all samples
# Initialize the population with random models.
while len(population) < xargs.ea_population_size:
print("<< ============== JOB (PID = %d) %s [Init population %d/%d] ============== >>"%(PID, '/'.join(xargs.save_dir.split("/")[-5:]), len(population), xargs.ea_population_size))
model = Model()
model.arch = random_arch()
model.accuracy, _, _time_cost_training = proxy_inference(xargs, model.arch, nas_bench, logger, -1, dataname, te_reward_generator)
time_cost_training += _time_cost_training
population.append(model)
history.append(model)
#################################
population, history, step_current, _time_cost_training = regularized_evolution(xargs, xargs.total_steps, step_current, xargs.ea_sample_size, random_arch, mutate_arch, logger, PID,
history, population, nas_bench, dataname, te_reward_generator
)
time_cost_training += _time_cost_training
total_time_cost = time.time() - start_time
logger.log('{:} regularized_evolution finish with {:.1f} s.'.format(time_string(), total_time_cost))
# best_arch = max(population, key=lambda i: i.accuracy)
# best_arch, _ = best_of_sample(population, topk = te_reward_generator._buffer_size if te_reward_generator is not None else None) # choose parent based on changing range out of samples
best_arch, _ = best_of_sample(population, topk=2, sort=True) # choose parent based on changing range out of samples
best_arch = best_arch.arch
logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
logger.log('-'*100)
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--ea_population_size', type=int, help='The population size in EA.')
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
parser.add_argument('--timestamp', default='none', type=str, help='timestamp for logging naming')
parser.add_argument('--batch_size', type=int, default=64, help='batch size for ntk')
parser.add_argument('--repeat', type=int, default=3, help='repeat calculation of NTK, Regions, MSE')
parser.add_argument('--total_steps', type=int, default=500, help='number of samplings for search')
parser.add_argument('--te_buffer_size', type=int, default=10, help='buffer size for TE reward generator')
parser.add_argument('--super_type', type=str, default='basic', help='type of supernet: basic or nasnet-super')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset) or args.search_space_name != 'nas-bench-201':
nas_bench = None
else:
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = API(args.arch_nas_dataset)
main(args, nas_bench)