-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel_segnet_baselines.py
252 lines (219 loc) · 12.2 KB
/
model_segnet_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import torch
import fnmatch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import argparse
import torch.utils.data.sampler as sampler
import shutil
from dataset.nyuv2 import *
from torch.autograd import Variable
from model.segnet import SegNet
import numpy as np
import pdb
from progress.bar import Bar as Bar
from utils import Logger, AverageMeter, accuracy, mkdir_p, savefig
from torch.autograd import Variable
from mgda.min_norm_solvers import MinNormSolver, gradient_normalizers
parser = argparse.ArgumentParser(description='Baselines (SegNet)')
parser.add_argument('--type', default='standard', type=str, help='split type: standard, wide, deep')
parser.add_argument('--weight', default='uniform', type=str, help='multi-task weighting: uniform, gradnorm, mgda')
parser.add_argument('--dataroot', default='nyuv2', type=str, help='dataset root')
parser.add_argument('--temp', default=1.0, type=float, help='temperature for DWA (must be positive)')
parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--wlr', default=0.001, type=float, help='initial learning rate')
parser.add_argument('--out', default='result', help='Directory to output the result')
parser.add_argument('--alpha', default=1.5, type=float, help='hyper params of GradNorm')
opt = parser.parse_args()
tasks = ['semantic', 'depth', 'normal']
class Weight(torch.nn.Module):
def __init__(self, tasks):
super(Weight, self).__init__()
self.weights = nn.Parameter(torch.FloatTensor([1.0, 1.0, 1.0]))
def save_checkpoint(state, is_best, checkpoint=opt.out, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, 'segnet_weight_{}_'.format(opt.weight) + filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'segnet_weight_{}_'.format(opt.weight) + 'model_best.pth.tar'))
if not os.path.isdir(opt.out):
mkdir_p(opt.out)
title = 'NYUv2'
logger = Logger(os.path.join(opt.out, 'segnet_weight_{}_log.txt'.format(opt.weight)), title=title)
logger.set_names(['Epoch', 'T.Ls', 'T. mIoU', 'T. Pix', 'T.Ld', 'T.abs', 'T.rel', 'T.Ln', 'T.Mean', 'T.Med', 'T.11', 'T.22', 'T.30',
'V.Ls', 'V. mIoU', 'V. Pix', 'V.Ld', 'V.abs', 'V.rel', 'V.Ln', 'V.Mean', 'V.Med', 'V.11', 'V.22', 'V.30', 'Ws', 'Wd', 'Wn'])
# define model, optimiser and scheduler
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
use_cuda = torch.cuda.is_available()
model = SegNet(type_=opt.type, class_nb=13).cuda()
Weights = Weight(tasks).cuda()
params = []
params += model.parameters()
params += [Weights.weights]
optimizer = optim.Adam(params, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
# compute parameter space
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Parameter Space: ABS: {:.1f}, REL: {:.4f}\n'.format(count_parameters(model),
count_parameters(model)/24981069))
print('LOSS FORMAT: SEMANTIC_LOSS MEAN_IOU PIX_ACC | DEPTH_LOSS ABS_ERR REL_ERR | NORMAL_LOSS MEAN MED <11.25 <22.5 <30\n')
# define dataset path
dataset_path = opt.dataroot
nyuv2_train_set = NYUv2(root=dataset_path, train=True)
nyuv2_test_set = NYUv2(root=dataset_path, train=False)
batch_size = 2
nyuv2_train_loader = torch.utils.data.DataLoader(
dataset=nyuv2_train_set,
batch_size=batch_size,
shuffle=True, num_workers=30, drop_last=True)
nyuv2_test_loader = torch.utils.data.DataLoader(
dataset=nyuv2_test_set,
batch_size=batch_size,
shuffle=True, num_workers=30)
# define parameters
total_epoch = 200
train_batch = len(nyuv2_train_loader)
test_batch = len(nyuv2_test_loader)
T = opt.temp
avg_cost = np.zeros([total_epoch, 24], dtype=np.float32)
lambda_weight = np.zeros([3, total_epoch])
best_loss = 100
for epoch in range(total_epoch):
index = epoch
cost = np.zeros(24, dtype=np.float32)
scheduler.step()
# apply Dynamic Weight Average
if opt.weight == 'dwa':
if index == 0 or index == 1:
lambda_weight[:, index] = 1.0
else:
w_1 = avg_cost[index - 1, 0] / avg_cost[index - 2, 0]
w_2 = avg_cost[index - 1, 3] / avg_cost[index - 2, 3]
w_3 = avg_cost[index - 1, 6] / avg_cost[index - 2, 6]
lambda_weight[0, index] = 3 * np.exp(w_1 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
lambda_weight[1, index] = 3 * np.exp(w_2 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
lambda_weight[2, index] = 3 * np.exp(w_3 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
bar = Bar('Training', max=train_batch)
# iteration for all batches
model.train()
nyuv2_train_dataset = iter(nyuv2_train_loader)
for k in range(train_batch):
train_data, train_label, train_depth, train_normal = nyuv2_train_dataset.next()
train_data, train_label = train_data.cuda(), train_label.type(torch.LongTensor).cuda()
train_depth, train_normal = train_depth.cuda(), train_normal.cuda()
train_pred, logsigma, feat = model(train_data)
train_loss = model.model_fit(train_pred[0], train_label, train_pred[1], train_depth, train_pred[2], train_normal)
loss = 0
norms = []
w = torch.ones(len(tasks)).float().cuda()
if opt.weight == 'mgda':
W = feat[-1]
W.retain_grad()
gygw = []
for i, t in enumerate(tasks):
gygw.append(torch.autograd.grad(train_loss[i], W, retain_graph=True)[0].detach())
sol, min_norm = MinNormSolver.find_min_norm_element(gygw)
for i in range(len(tasks)):
w[i] = float(sol[i])
if opt.weight == 'gradnorm':
norms = []
# compute gradient w.r.t. last shared conv layer's parameters
W = model.conv_block_dec[0][0].weight
for i, t in enumerate(tasks):
gygw = torch.autograd.grad(train_loss[i], W, retain_graph=True)
norms.append(torch.norm(torch.mul(Weights.weights[i], gygw[0])))
norms = torch.stack(norms)
task_loss = torch.stack(train_loss)
if epoch ==0 and k == 0:
initial_task_loss = task_loss
loss_ratio = task_loss.data / initial_task_loss.data
inverse_train_rate = loss_ratio / loss_ratio.mean()
mean_norm = norms.mean()
constant_term = mean_norm.data * (inverse_train_rate ** opt.alpha)
grad_norm_loss = (norms - constant_term).abs().sum()
w_grad = torch.autograd.grad(grad_norm_loss, Weights.weights)[0]
for i in range(len(tasks)):
w[i] = Weights.weights[i].data
if opt.weight == 'dwa':
for i in range(len(tasks)):
w[i] = lambda_weight[i, index]
loss = sum(w[i].data * train_loss[i] for i in range(len(tasks)))
optimizer.zero_grad()
loss.backward()
if opt.weight == 'gradnorm':
Weights.weights.grad = torch.zeros_like(Weights.weights.data)
Weights.weights.grad.data = w_grad.data
optimizer.step()
if opt.weight == 'gradnorm':
Weights.weights.data = len(tasks) * Weights.weights.data / Weights.weights.data.sum()
cost[0] = train_loss[0].item()
cost[1] = model.compute_miou(train_pred[0], train_label).item()
cost[2] = model.compute_iou(train_pred[0], train_label).item()
cost[3] = train_loss[1].item()
cost[4], cost[5] = model.depth_error(train_pred[1], train_depth)
cost[6] = train_loss[2].item()
cost[7], cost[8], cost[9], cost[10], cost[11] = model.normal_error(train_pred[2], train_normal)
avg_cost[index, :12] += cost[:12] / train_batch
bar.suffix = '({batch}/{size}) | LossS: {loss_s:.4f} | LossD: {loss_d:.4f} | LossN: {loss_n:.4f} | Ws: {ws:.4f} | Wd: {wd:.4f}| Wn: {wn:.4f}'.format(
batch=k + 1,
size=train_batch,
loss_s=cost[1],
loss_d=cost[3],
loss_n=cost[6],
ws=w[0].data,
wd=w[1].data,
wn=w[2].data,
)
bar.next()
bar.finish()
loss_index = (avg_cost[index, 0] + avg_cost[index, 3] + avg_cost[index, 6]) / 3.0
isbest = loss_index < best_loss
# evaluating test data
model.eval()
with torch.no_grad(): # operations inside don't track history
nyuv2_test_dataset = iter(nyuv2_test_loader)
for k in range(test_batch):
test_data, test_label, test_depth, test_normal = nyuv2_test_dataset.next()
test_data, test_label = test_data.cuda(), test_label.type(torch.LongTensor).cuda()
test_depth, test_normal = test_depth.cuda(), test_normal.cuda()
test_pred, _, _ = model(test_data)
test_loss = model.model_fit(test_pred[0], test_label, test_pred[1], test_depth, test_pred[2], test_normal)
cost[12] = test_loss[0].item()
cost[13] = model.compute_miou(test_pred[0], test_label).item()
cost[14] = model.compute_iou(test_pred[0], test_label).item()
cost[15] = test_loss[1].item()
cost[16], cost[17] = model.depth_error(test_pred[1], test_depth)
cost[18] = test_loss[2].item()
cost[19], cost[20], cost[21], cost[22], cost[23] = model.normal_error(test_pred[2], test_normal)
avg_cost[index, 12:] += cost[12:] / test_batch
print('Epoch: {:04d} | TRAIN: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} '
'TEST: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'
.format(index, avg_cost[index, 0], avg_cost[index, 1], avg_cost[index, 2], avg_cost[index, 3],
avg_cost[index, 4], avg_cost[index, 5], avg_cost[index, 6], avg_cost[index, 7], avg_cost[index, 8], avg_cost[index, 9],
avg_cost[index, 10], avg_cost[index, 11], avg_cost[index, 12], avg_cost[index, 13],
avg_cost[index, 14], avg_cost[index, 15], avg_cost[index, 16], avg_cost[index, 17], avg_cost[index, 18],
avg_cost[index, 19], avg_cost[index, 20], avg_cost[index, 21], avg_cost[index, 22], avg_cost[index, 23]))
logger.append([index, avg_cost[index, 0], avg_cost[index, 1], avg_cost[index, 2], avg_cost[index, 3],
avg_cost[index, 4], avg_cost[index, 5], avg_cost[index, 6], avg_cost[index, 7], avg_cost[index, 8], avg_cost[index, 9],
avg_cost[index, 10], avg_cost[index, 11], avg_cost[index, 12], avg_cost[index, 13],
avg_cost[index, 14], avg_cost[index, 15], avg_cost[index, 16], avg_cost[index, 17], avg_cost[index, 18],
avg_cost[index, 19], avg_cost[index, 20], avg_cost[index, 21], avg_cost[index, 22], avg_cost[index, 23],
lambda_weight[0, index], lambda_weight[1, index], lambda_weight[2, index]])
if isbest:
best_loss = loss_index
print_index = index
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
'optimizer' : optimizer.state_dict(),
}, isbest)
print('Epoch: {:04d} | TRAIN: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} '
'TEST: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'
.format(print_index, avg_cost[print_index, 0], avg_cost[print_index, 1], avg_cost[print_index, 2], avg_cost[print_index, 3],
avg_cost[print_index, 4], avg_cost[print_index, 5], avg_cost[print_index, 6], avg_cost[print_index, 7], avg_cost[print_index, 8], avg_cost[print_index, 9],
avg_cost[print_index, 10], avg_cost[print_index, 11], avg_cost[print_index, 12], avg_cost[print_index, 13],
avg_cost[print_index, 14], avg_cost[print_index, 15], avg_cost[print_index, 16], avg_cost[print_index, 17], avg_cost[print_index, 18],
avg_cost[print_index, 19], avg_cost[print_index, 20], avg_cost[print_index, 21], avg_cost[print_index, 22], avg_cost[print_index, 23]))