forked from lgroves6/AIVascularSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_unet.py
122 lines (107 loc) · 4.52 KB
/
test_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
from unet import *
from tensorflow.keras.backend import set_session
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.optimizers import *
def softmax_output_to_one_hot(y):
max_indices = np.argmax(y, axis=2)
return np.eye(np.max(max_indices) + 1)[max_indices]
'''
Displays the ultrasound image and its true and predicted segmentations. Colours are as follows:
Green = US image
Red = Ground truth segmentation
Blue = Predicted segmentation
PARAMS:
- idx: the index in the dataset of the image to display
- y: the predicted segmentation of the image at idx
'''
def display_image(idx, y):
x = X[idx]
y_pred_0 = y[:,:,1]
y_pred_1 = y[:,:,2]
#y = np.argmax(y, axis=2)
print(y[0][0])
#img = np.squeeze(np.maximum(x, y), axis=2)
y_true_col = 0.5*np.stack((np.squeeze(Y[idx], axis=2),np.zeros((y.shape[0],y.shape[1])), np.zeros((y.shape[0],y.shape[1]))), axis=2) # RED
y_pred_col_0 = 0.5*np.stack((np.zeros((y.shape[0], y.shape[1])), np.zeros((y.shape[0], y.shape[1])), y_pred_1), axis=2) # BLUE
y_pred_col_1 = 0.5*np.stack((y_pred_0, y_pred_0, np.zeros((y.shape[0], y.shape[1]))), axis=2) # YELLOW
xcol = np.stack((np.squeeze(x, axis=2), np.squeeze(x, axis=2), np.squeeze(x, axis=2)), axis=2) # WHITE
plt.clf()
plt.imshow(xcol + y_pred_col_0 + y_pred_col_1 + y_true_col) # Display the image
plt.title(str(idx) + ' / ' + str(Y.shape[0] - 1))
plt.text(-100, 50, "US image", color="white")
plt.text(-100, 90, "ground truth", color="red")
plt.text(-100, 130, "JV prediction", color="blue")
plt.text(-100, 150, "CA prediction", color="yellow")
fig.canvas.draw()
plt.show()
def make_prediction(idx):
if model_name == 'unet':
y = model.predict(np.expand_dims(X[idx], axis=0))
else:
if (idx < 2): idx = 2
x = np.concatenate([np.expand_dims(X[idx], axis=0),
np.expand_dims(X[idx-1], axis=0),
np.expand_dims(X[idx-2], axis=0)], axis=0)
x = np.expand_dims(x, axis=0)
y = model.predict(x)
y = np.squeeze(y, axis=0)
y = softmax_output_to_one_hot(y)
display_image(idx, y)
print("Dice = ", get_gen_dice_score(Y[idx], y))
def evaluate_set():
X_test = X[0:110]
Y_test = Y[0:110]
#model.compile(optimizer=Adam(lr=1e-4), loss=generalized_dice_loss, metrics=['accuracy'])
#preds = model.evaluate(x=X_test, y=Y_test)
avg_dice = 0
for i in range(0, X_test.shape[0]):
y = model.predict(np.expand_dims(X[i], axis=0))
y = np.squeeze(y, axis=0)
y = softmax_output_to_one_hot(y)
avg_dice += get_gen_dice_score(Y_test[i], y)
avg_dice /= X_test.shape[0]
print("Avg test set Dice Score = " + str(avg_dice))
def key_pressed(event):
if event.key == 'c':
globals()['idx'] = (idx + 1)%X.shape[0]
make_prediction(idx)
elif event.key == 'z':
globals()['idx'] = (idx - 1)%X.shape[0]
make_prediction(idx)
'''
Calculates the dice similarity coefficient of two segmentations
PARAMS:
- y_true: the ground truth segmentation
- y_pred: the prediced segmentation
'''
def get_gen_dice_score(y_true, y_pred):
epsilon = 1e-5 # To ensure no division by 0
#y_pred = tf.math.round(y_pred) # y_pred was a sigmoid activation
numerator = denominator = epsilon
y_true = to_categorical(y_true)
intersection = y_true * y_pred
union = y_true + y_pred
for i in range(0, y_pred.shape[-1]):
intersection_sum = np.sum(intersection[...,i])
union_sum = np.sum(union[...,i])
class_weight = 1.0 / (np.sum(y_true[...,i]) ** 2 + epsilon)
numerator += class_weight * intersection_sum
denominator += class_weight * union_sum
dice_score = 2 * numerator / denominator
return dice_score
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
model_name = 'unet30'
X = np.load('./datasets/X.npy')
Y = np.load('./datasets/Y.npy')
model = load_model('./models/model_' + model_name + '.h5',
custom_objects={'generalized_dice_loss': generalized_dice_loss, 'generalized_dice_score': generalized_dice_score,
'custom_loss': custom_loss})
idx = 0
fig, ax = plt.subplots()
fig.canvas.mpl_connect('key_press_event', key_pressed)
make_prediction(idx)