forked from waldeland/CNN-for-ASI
-
Notifications
You must be signed in to change notification settings - Fork 2
/
test_parallel.py
455 lines (371 loc) · 14.4 KB
/
test_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Compatability Imports
from __future__ import print_function
import os
# set default number of GPUs which are discoverable
N_GPU = 8
DEVICE_IDS = list(range(N_GPU))
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(x) for x in DEVICE_IDS])
# static parameters
RESOLUTION = 1
# these match how the model is trained
N_CLASSES = 2
IM_SIZE = 65
import random
import argparse
import json
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader
import torch.distributed as dist
if torch.cuda.is_available():
device_str = os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device("cuda:" + device_str)
else:
raise Exception("No GPU detected for parallel scoring!")
# ability to perform multiprocessing
import multiprocessing
from os.path import join
from data import readSEGY, get_slice
from texture_net import TextureNet
import itertools
import numpy as np
import tb_logger
from data import writeSEGY
# graphical progress bar
from tqdm import tqdm
class ModelWrapper(nn.Module):
"""
Wrap TextureNet for (Distributed)DataParallel to invoke classify method
"""
def __init__(self, texture_model):
super(ModelWrapper, self).__init__()
self.texture_model = texture_model
def forward(self, input):
return self.texture_model.classify(input)
class MyDataset(Dataset):
def __init__(self, data, window, coord_list):
# main array
self.data = data
self.coord_list = coord_list
self.window = window
self.len = len(coord_list)
def __getitem__(self, index):
# TODO: can we specify a pixel mathematically by index?
pixel = self.coord_list[index]
x, y, z = pixel
# TODO: current bottleneck - can we slice out voxels any faster
small_cube = self.data[
x - self.window : x + self.window + 1,
y - self.window : y + self.window + 1,
z - self.window : z + self.window + 1,
]
return small_cube[np.newaxis, :, :, :], pixel
def __len__(self):
return self.len
def main_worker(gpu, ngpus_per_node, args):
"""
Main worker function, given the gpu parameter and how many GPUs there are per node
it can figure out its rank
:param gpu: rank of the process if gpu >= ngpus_per_node, otherwise just gpu ID which worker will run on.
:param ngpus_per_node: total number of GPU available on this node.
:param args: various arguments for the code in the worker.
:return: nothing
"""
print("I got GPU", gpu)
args.rank = gpu
# loop around in round-robin fashion if we want to run multiple processes per GPU
args.gpu = gpu % ngpus_per_node
# initialize the distributed process and join the group
print(
"setting rank",
args.rank,
"world size",
args.world_size,
args.dist_backend,
args.dist_url,
)
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
# set default GPU device for this worker
torch.cuda.set_device(args.gpu)
# set up device for the rest of the code
device = torch.device("cuda:" + str(args.gpu))
# Load trained model (run train.py to create trained
network = TextureNet(n_classes=N_CLASSES)
model_state_dict = torch.load(
join(args.data, "saved_model.pt"), map_location=device
)
network.load_state_dict(model_state_dict)
network.eval()
network.cuda(args.gpu)
# set the scoring wrapper also to eval mode
model = ModelWrapper(network)
model.eval()
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have.
# Min batch size is 1
args.batch_size = max(int(args.batch_size / ngpus_per_node), 1)
# obsolete: number of data loading workers - this is only used when reading from disk, which we're not
# args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
# wrap the model for distributed use - for scoring this is not needed
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
# set to benchmark mode because we're running the same workload multiple times
cudnn.benchmark = True
# Read 3D cube
# NOTE: we cannot pass this data manually as serialization of data into each python process is costly,
# so each worker has to load the data on its own.
data, data_info = readSEGY(join(args.data, "data.segy"))
# Get half window size
window = IM_SIZE // 2
# reduce data size for debugging
if args.debug:
data = data[0 : 3 * window]
# generate full list of coordinates
# memory footprint of this isn't large yet, so not need to wrap as a generator
nx, ny, nz = data.shape
x_list = range(window, nx - window)
y_list = range(window, ny - window)
z_list = range(window, nz - window)
print("-- generating coord list --")
# TODO: is there any way to use a generator with pyTorch data loader?
coord_list = list(itertools.product(x_list, y_list, z_list))
# we need to map the data manually to each rank - DistributedDataParallel doesn't do this at score time
print("take a subset of coord_list by chunk")
coord_list = list(np.array_split(np.array(coord_list), args.world_size)[args.rank])
coord_list = [tuple(x) for x in coord_list]
# we only score first batch in debug mode
if args.debug:
coord_list = coord_list[0 : args.batch_size]
# prepare the data
print("setup dataset")
# TODO: RuntimeError: cannot pin 'torch.cuda.FloatTensor' only dense CPU tensors can be pinned
data_torch = torch.cuda.FloatTensor(data).cuda(args.gpu, non_blocking=True)
dataset = MyDataset(data_torch, window, coord_list)
# not sampling like in training
# datasampler = DistributedSampler(dataset)
# just set some default epoch
# datasampler.set_epoch(1)
# we use 0 workers because we're reading from memory
print("setting up loader")
my_loader = DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=0,
pin_memory=False,
sampler=None
# sampler=datasampler
)
print("running loop")
pixels_x = []
pixels_y = []
pixels_z = []
predictions = []
# Loop through center pixels in output cube
with torch.no_grad():
print("no grad")
for (chunk, pixel) in tqdm(my_loader):
input = chunk.cuda(args.gpu, non_blocking=True)
output = model(input)
# save and deal with it later on CPU
# we want to make sure order is preserved
pixels_x += pixel[0].tolist()
pixels_y += pixel[1].tolist()
pixels_z += pixel[2].tolist()
predictions += output.tolist()
# just score a single batch in debug mode
if args.debug:
break
# TODO: legacy Queue Manager code from multiprocessing which we left here for illustration purposes
# result_queue.append([deepcopy(coord_list), deepcopy(predictions)])
# result_queue.append([coord_list, predictions])
# transform pixels into x, y, z list format
with open("results_{}.json".format(args.rank), "w") as f:
json.dump(
{
"pixels_x": pixels_x,
"pixels_y": pixels_y,
"pixels_z": pixels_z,
"preds": [int(x[0][0][0][0]) for x in predictions],
},
f,
)
# TODO: we cannot use pickle to dump from multiprocess - processes lock up
# with open("result_predictions_{}.pkl".format(args.rank), "wb") as f:
# print ("dumping predictions pickle file")
# pickle.dump(predictions, f)
parser = argparse.ArgumentParser(description="Seismic Distributed Scoring")
parser.add_argument(
"-d", "--data", default="F3", type=str, help="default dataset folder name"
)
parser.add_argument(
"-s",
"--slice",
default="inline",
type=str,
choices=["inline", "crossline", "timeslice", "full"],
help="slice type which we want to score on",
)
parser.add_argument(
"-n",
"--slice-num",
default=339,
type=int,
help="slice number which we want to score",
)
parser.add_argument(
"-b",
"--batch-size",
default=2 ** 15,
type=int,
help="batch size which we use for scoring",
)
parser.add_argument(
"-p",
"--n-proc-per-gpu",
default=1,
type=int,
help="number of multiple processes to run per each GPU",
)
parser.add_argument(
"--dist-url",
default="tcp://127.0.0.1:12345",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument("--seed", default=0, type=int, help="default random number seed")
parser.add_argument(
"--debug",
action="store_true",
help="debug flag - if on we will only process one batch",
)
def main():
# use distributed scoring+
if RESOLUTION != 1:
raise Exception("Currently we only support pixel-level scoring")
args = parser.parse_args()
args.gpu = None
args.rank = 0
# world size is the total number of processes we want to run across all nodes and GPUs
args.world_size = N_GPU * args.n_proc_per_gpu
if args.debug:
args.batch_size = 4
# fix away any kind of randomness - although for scoring it should not matter
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
print("RESOLUTION {}".format(RESOLUTION))
##########################################################################
print("-- scoring on GPU --")
ngpus_per_node = torch.cuda.device_count()
print("nGPUs per node", ngpus_per_node)
"""
First, read this: https://thelaziestprogrammer.com/python/a-multiprocessing-pool-pickle
OK, so there are a few ways in which we can spawn a running process with pyTorch:
1) Default mp.spawn should work just fine but won't let us access internals
2) So we copied out the code from mp.spawn below to control how processes get created
3) One could spawn their own processes but that would not be thread-safe with CUDA, line
"mp = multiprocessing.get_context('spawn')" guarantees we use the proper pyTorch context
Input data serialization is too costly, in general so is output data serialization as noted here:
https://docs.python.org/3/library/multiprocessing.html
Feeding data into each process is too costly, so each process loads its own data.
For deserialization we could try and fail using:
1) Multiprocessing queue manager
manager = Manager()
return_dict = manager.dict()
OR
result_queue = multiprocessing.Queue()
CALLING
with Manager() as manager:
results_list = manager.list()
mp.spawn(main_worker, nprocs=args.world_size, args=(ngpus_per_node, results_list/dict/queue, args))
results = deepcopy(results_list)
2) pickling results to disc.
Turns out that for the reasons mentioned in the first article both approaches are too costly.
The only reasonable way to deserialize data from a Python process is to write it to text, in which case
writing to JSON is a saner approach: https://www.datacamp.com/community/tutorials/pickle-python-tutorial
"""
# invoke processes manually suppressing error queue
mp = multiprocessing.get_context("spawn")
# error_queues = []
processes = []
for i in range(args.world_size):
# error_queue = mp.SimpleQueue()
process = mp.Process(
target=main_worker, args=(i, ngpus_per_node, args), daemon=False
)
process.start()
# error_queues.append(error_queue)
processes.append(process)
# block on wait
for process in processes:
process.join()
print("-- aggregating results --")
# Read 3D cube
data, data_info = readSEGY(join(args.data, "data.segy"))
# Log to tensorboard - input slice
logger = tb_logger.TBLogger("log", "Test")
logger.log_images(
args.slice + "_" + str(args.slice_num),
get_slice(data, data_info, args.slice, args.slice_num),
cm="gray",
)
x_coords = []
y_coords = []
z_coords = []
predictions = []
for i in range(args.world_size):
with open("results_{}.json".format(i), "r") as f:
dict = json.load(f)
x_coords += dict["pixels_x"]
y_coords += dict["pixels_y"]
z_coords += dict["pixels_z"]
predictions += dict["preds"]
"""
So because of Python's GIL having multiple workers write to the same array is not efficient - basically
the only way we can have shared memory is with threading but thanks to GIL only one thread can execute at a time,
so we end up with the overhead of managing multiple threads when writes happen sequentially.
A much faster alternative is to just invoke underlying compiled code (C) through the use of array indexing.
So basically instead of the following:
NUM_CORES = multiprocessing.cpu_count()
print("Post-processing will run on {} CPU cores on your machine.".format(NUM_CORES))
def worker(classified_cube, coord):
x, y, z = coord
ind = new_coord_list.index(coord)
# print (coord, ind)
pred_class = predictions[ind]
classified_cube[x, y, z] = pred_class
# launch workers in parallel with memory sharing ("threading" backend)
_ = Parallel(n_jobs=4*NUM_CORES, backend="threading")(
delayed(worker)(classified_cube, coord) for coord in tqdm(pixels)
)
We do this:
"""
# placeholder for results
classified_cube = np.zeros(data.shape)
# store final results
classified_cube[x_coords, y_coords, z_coords] = predictions
print("-- writing segy --")
in_file = join(args.data, "data.segy".format(RESOLUTION))
out_file = join(args.data, "salt_{}.segy".format(RESOLUTION))
writeSEGY(out_file, in_file, classified_cube)
print("-- logging prediction --")
# log prediction to tensorboard
logger = tb_logger.TBLogger("log", "Test_scored")
logger.log_images(
args.slice + "_" + str(args.slice_num),
get_slice(classified_cube, data_info, args.slice, args.slice_num),
cm="binary",
)
if __name__ == "__main__":
main()