forked from waldeland/CNN-for-ASI
-
Notifications
You must be signed in to change notification settings - Fork 2
/
data.py
241 lines (193 loc) · 7.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Compatability Imports
from __future__ import print_function
from os.path import isfile, join
import segyio
from os import listdir
import numpy as np
import scipy.misc
def readSEGY(filename):
print('Loading data cube from',filename,'with:')
# Read full data cube
data = segyio.tools.cube(filename)
# Put temporal axis first
data = np.moveaxis(data, -1, 0)
#Make data cube fast to acess
data = np.ascontiguousarray(data,'float32')
#Read meta data
segyfile = segyio.open(filename, "r")
print(' Crosslines: ', segyfile.xlines[0], ':', segyfile.xlines[-1])
print(' Inlines: ', segyfile.ilines[0], ':', segyfile.ilines[-1])
print(' Timeslices: ', '1', ':', data.shape[0])
#Make dict with cube-info
data_info = {}
data_info['crossline_start'] = segyfile.xlines[0]
data_info['inline_start'] = segyfile.ilines[0]
data_info['timeslice_start'] = 1 #Todo: read this from segy
data_info['shape'] = data.shape
#Read dt and other params needed to do create a new
return data, data_info
# Writes out_cube to a segy-file (out_filename) with same header/size as in_filename
def writeSEGY(out_filename, in_filename, out_cube):
#Select last channel
if type(out_cube) is list:
out_cube = out_cube[-1]
print('Writing interpretation to ' + out_filename)
#Copy segy file
from shutil import copyfile
copyfile(in_filename, out_filename)
# Moving temporal axis back again
out_cube = np.moveaxis(out_cube, 0,-1)
#Open out-file
with segyio.open(out_filename, "r+") as src:
iline_start = src.ilines[0]
dtype = src.iline[iline_start].dtype
# loop through inlines and insert output
for i in src.ilines:
iline = out_cube[i-iline_start,:,:]
src.iline[i] = np.ascontiguousarray(iline.astype(dtype))
# Moving temporal axis first again - just in case the user want to keep working on it
out_cube = np.moveaxis(out_cube, -1, 0)
print('Writing interpretation - Finished')
return
#Alternative writings for slice-type
inline_alias = ['inline','in-line','iline','y']
crossline_alias = ['crossline','cross-line','xline','x']
timeslice_alias = ['timeslice','time-slice','t','z','depthslice','depth']
# Read labels from an image
def readLabels(foldername, data_info):
files = [f for f in listdir(foldername) if isfile(join(foldername, f))]
label_imgs = []
label_coordinates = {}
#Find image files in folder
for file in files:
if file[-3:].lower() in ['jpg','png','peg', 'bmp','gif'] and file[0] !='.':
if True:
tmp = file.split('_')
slice_type = tmp[0].lower()
tmp = tmp[1].split('.')
slice_no = int(tmp[0])
if slice_type not in inline_alias + crossline_alias + timeslice_alias:
print('File:', file, 'could not be loaded.', 'Unknown slice type')
continue
if slice_type in inline_alias:
slice_type = 'inline'
if slice_type in crossline_alias:
slice_type = 'crossline'
if slice_type in timeslice_alias:
slice_type = 'timeslice'
#Read file
print('Loading labels for', slice_type, slice_no, 'with')
img = scipy.misc.imread(join(foldername, file))
img = interpolate_to_fit_data(img, slice_type, slice_no, data_info)
label_img = parseLabelsInImage(img)
#Get coordinates for slice
coords = get_coordinates_for_slice(slice_type, slice_no, data_info)
#Loop through labels in label_img and append to label_coordinates
for cls in np.unique(label_img):
if cls > -1:
if str(cls) not in label_coordinates.keys():
label_coordinates[str(cls)] = np.array(np.zeros([3,0]))
inds_with_cls = label_img==cls
cords_with_cls = coords[:, inds_with_cls.ravel()]
label_coordinates[str(cls)] = np.concatenate( (label_coordinates[str(cls)] , cords_with_cls), 1)
print(' ', str(np.sum(inds_with_cls)), 'labels for class',str(cls))
if len(np.unique(label_img)) == 1:
print(' ', 0, 'labels', str(cls))
#Add label_img to output
label_imgs.append([label_img, slice_type, slice_no])
#except:
# print('File:', file, 'could not be loaded.')
return label_imgs, label_coordinates
# Add colors to this table to make it possible to have more classes
class_color_coding =[
[0,0,255], #blue
[0,255,0], #green
[0,255,255], #cyan
[255,0,0], #red
[255,0,255], #blue
[255,255,0] #yellow
]
#Convert RGB image to class img
def parseLabelsInImage(img):
label_img = np.int16(img[:,:,0])*0 -1 # -1 = no class
#decompose color channels (#Alpha is ignored)
r = img[:,:,0]
g = img[:,:,1]
b = img[:,:,2]
#Alpha channel
if img.shape[2] == 4:
a = 1-img.shape[2]//255
r = r * a
g = g * a
b = b * a
tolerance = 1
#Go through classes and find pixels with this class
cls = 0
for color in class_color_coding:
#Find pixels with these labels
inds = (np.abs(r - color[0]) < tolerance) & \
(np.abs(g - color[1]) < tolerance) & \
(np.abs(b - color[2]) < tolerance)
label_img[inds] = cls
cls +=1
return label_img
# Function to resize image if needed
def interpolate_to_fit_data(img, slice_type, slice_no, data_info):
#Get wanted output size
if slice_type == 'inline':
n0 = data_info['shape'][0]
n1 = data_info['shape'][2]
elif slice_type == 'crossline':
n0 = data_info['shape'][0]
n1 = data_info['shape'][1]
elif slice_type == 'timeslice':
n0 = data_info['shape'][1]
n1 = data_info['shape'][2]
return scipy.misc.imresize(img, (n0,n1), interp='nearest')
# Get coordinates for slice in the full cube
def get_coordinates_for_slice( slice_type, slice_no, data_info):
ds = data_info['shape']
#Coordinates for cube
x0,x1,x2 = np.meshgrid( np.linspace(0, ds[0] - 1, ds[0]),
np.linspace(0, ds[1] - 1, ds[1]),
np.linspace(0, ds[2] - 1, ds[2]),
indexing='ij')
if slice_type == 'inline':
start = data_info['inline_start']
slice_no = slice_no - start
x0 = x0[:, slice_no, :]
x1 = x1[:, slice_no, :]
x2 = x2[:, slice_no, :]
elif slice_type == 'crossline':
start = data_info['crossline_start']
slice_no = slice_no - start
x0 = x0[:, :, slice_no]
x1 = x1[:, :, slice_no]
x2 = x2[:, :, slice_no]
elif slice_type == 'timeslice':
start = data_info['timeslice_start']
slice_no = slice_no - start
x0 = x0[slice_no, :, :]
x1 = x1[slice_no, :, :]
x2 = x2[slice_no, :, :]
#Collect indexes
x0 = np.expand_dims(x0.ravel(), 0)
x1 = np.expand_dims(x1.ravel(), 0)
x2 = np.expand_dims(x2.ravel(), 0)
coords = np.concatenate((x0,x1,x2), axis=0)
return coords
# Return data-slice
def get_slice(data, data_info, slice_type, slice_no, window=0):
if slice_type == 'inline':
start = data_info['inline_start']
slice_no = slice_no - start
slice = data[:, slice_no-window:slice_no+window+1, :]
elif slice_type == 'crossline':
start = data_info['crossline_start']
slice_no = slice_no - start
slice = data[:, slice_no-window:slice_no+window+1, :]
elif slice_type == 'timeslice':
start = data_info['timeslice_start']
slice_no = slice_no - start
slice = data[:, slice_no-window:slice_no+window+1, :]
return np.squeeze(slice)