From 50285f69b974b28551232ebe3ec413826e29c678 Mon Sep 17 00:00:00 2001
From: VARUNSHIYAM <138989960+Varunshiyam@users.noreply.github.com>
Date: Sat, 9 Nov 2024 19:34:29 +0530
Subject: [PATCH 1/2] fixes 854
---
...nt-predictions-using-multiple-models.ipynb | 1452 +++++++++++++++++
1 file changed, 1452 insertions(+)
create mode 100644 Prediction Models/College_placement_prediction/collegeplacement-predictions-using-multiple-models.ipynb
diff --git a/Prediction Models/College_placement_prediction/collegeplacement-predictions-using-multiple-models.ipynb b/Prediction Models/College_placement_prediction/collegeplacement-predictions-using-multiple-models.ipynb
new file mode 100644
index 00000000..111aea1d
--- /dev/null
+++ b/Prediction Models/College_placement_prediction/collegeplacement-predictions-using-multiple-models.ipynb
@@ -0,0 +1,1452 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "409556bc",
+ "metadata": {
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "execution": {
+ "iopub.execute_input": "2024-01-07T21:48:33.829634Z",
+ "iopub.status.busy": "2024-01-07T21:48:33.829162Z",
+ "iopub.status.idle": "2024-01-07T21:48:35.835265Z",
+ "shell.execute_reply": "2024-01-07T21:48:35.834212Z"
+ },
+ "papermill": {
+ "duration": 2.021466,
+ "end_time": "2024-01-07T21:48:35.838320",
+ "exception": false,
+ "start_time": "2024-01-07T21:48:33.816854",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "/kaggle/input/college-placement/placement-dataset.csv\n"
+ ]
+ }
+ ],
+ "source": [
+ "# This Python 3 environment comes with many helpful analytics libraries installed\n",
+ "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
+ "# For example, here's several helpful packages to load\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np # linear algebra\n",
+ "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Input data files are available in the read-only \"../input/\" directory\n",
+ "# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n",
+ "\n",
+ "import os\n",
+ "for dirname, _, filenames in os.walk('/kaggle/input'):\n",
+ " for filename in filenames:\n",
+ " print(os.path.join(dirname, filename))\n",
+ "\n",
+ "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n",
+ "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "a753911f",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-01-07T21:48:35.859906Z",
+ "iopub.status.busy": "2024-01-07T21:48:35.859358Z",
+ "iopub.status.idle": "2024-01-07T21:48:35.913968Z",
+ "shell.execute_reply": "2024-01-07T21:48:35.912967Z"
+ },
+ "papermill": {
+ "duration": 0.068204,
+ "end_time": "2024-01-07T21:48:35.916475",
+ "exception": false,
+ "start_time": "2024-01-07T21:48:35.848271",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " cgpa | \n",
+ " iq | \n",
+ " placement | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 6.8 | \n",
+ " 123.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 5.9 | \n",
+ " 106.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 5.3 | \n",
+ " 121.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7.4 | \n",
+ " 132.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5.8 | \n",
+ " 142.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 95 | \n",
+ " 4.3 | \n",
+ " 200.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 96 | \n",
+ " 4.4 | \n",
+ " 42.0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 97 | \n",
+ " 6.7 | \n",
+ " 182.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 98 | \n",
+ " 6.3 | \n",
+ " 103.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 99 | \n",
+ " 6.2 | \n",
+ " 113.0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
100 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " cgpa iq placement\n",
+ "0 6.8 123.0 1\n",
+ "1 5.9 106.0 0\n",
+ "2 5.3 121.0 0\n",
+ "3 7.4 132.0 1\n",
+ "4 5.8 142.0 0\n",
+ ".. ... ... ...\n",
+ "95 4.3 200.0 0\n",
+ "96 4.4 42.0 0\n",
+ "97 6.7 182.0 1\n",
+ "98 6.3 103.0 1\n",
+ "99 6.2 113.0 1\n",
+ "\n",
+ "[100 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('/kaggle/input/college-placement/placement-dataset.csv')\n",
+ "df = df.drop(\"Unnamed: 0\", axis=1)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "f03c9b83",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-01-07T21:48:35.938038Z",
+ "iopub.status.busy": "2024-01-07T21:48:35.937665Z",
+ "iopub.status.idle": "2024-01-07T21:48:35.960758Z",
+ "shell.execute_reply": "2024-01-07T21:48:35.959642Z"
+ },
+ "papermill": {
+ "duration": 0.036525,
+ "end_time": "2024-01-07T21:48:35.963043",
+ "exception": false,
+ "start_time": "2024-01-07T21:48:35.926518",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " cgpa | \n",
+ " iq | \n",
+ " placement | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 100.000000 | \n",
+ " 100.000000 | \n",
+ " 100.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 5.991000 | \n",
+ " 123.580000 | \n",
+ " 0.500000 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.143634 | \n",
+ " 39.944198 | \n",
+ " 0.502519 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 3.300000 | \n",
+ " 37.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 5.075000 | \n",
+ " 101.500000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 6.000000 | \n",
+ " 127.500000 | \n",
+ " 0.500000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 6.900000 | \n",
+ " 149.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 8.500000 | \n",
+ " 233.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " cgpa iq placement\n",
+ "count 100.000000 100.000000 100.000000\n",
+ "mean 5.991000 123.580000 0.500000\n",
+ "std 1.143634 39.944198 0.502519\n",
+ "min 3.300000 37.000000 0.000000\n",
+ "25% 5.075000 101.500000 0.000000\n",
+ "50% 6.000000 127.500000 0.500000\n",
+ "75% 6.900000 149.000000 1.000000\n",
+ "max 8.500000 233.000000 1.000000"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "80454133",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-01-07T21:48:35.984855Z",
+ "iopub.status.busy": "2024-01-07T21:48:35.983940Z",
+ "iopub.status.idle": "2024-01-07T21:48:36.438112Z",
+ "shell.execute_reply": "2024-01-07T21:48:36.436974Z"
+ },
+ "papermill": {
+ "duration": 0.467802,
+ "end_time": "2024-01-07T21:48:36.440787",
+ "exception": false,
+ "start_time": "2024-01-07T21:48:35.972985",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA710lEQVR4nO3de1yUdf7//+dwGkRBTVGkCA95SE1NTfNQaipo5qqZJeaKh9rd0rLI+qTfSsjKTpqVllsfT22Z5lZuZWpImRmakYeiz6ZgImviMRHBHEe4fn/4c7aJgzDOMDNcj/vtNje63tf7uq7X9WYcnl2nsRiGYQgAAMBEArxdAAAAQHUjAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAGoMZYuXSqLxaKcnByPb2v8+PFq2rSpYzonJ0cWi0Uvvviix7ctScnJybJYLNWyLaAmIgABNdTevXv117/+Vc2bN1doaKgiIiLUq1cvvfzyy/rtt9+c+paUlOitt97SwIED1bBhQwUHB6tRo0aKi4vTG2+8IZvN5tTfYrE4XgEBAYqOjlZcXJw2btxYqo7i4mJFR0fLYrFo7dq1la5/48aNTtuxWq1q3Lix+vbtq2eeeUZHjx51aVz+6PTp00pOTi6zdm/z5doAf2fhu8CAmmfNmjUaNWqUrFarxo0bp/bt2+vs2bPavHmz3n//fY0fP15vvPGGJOm3337TiBEjtH79evXs2VNDhw5V48aN9euvv+rLL7/Up59+qsTERC1atMixfovFooEDB2rcuHEyDEP79u3Ta6+9piNHjmjNmjUaPHiwo29qaqri4uLUtGlT9erVS2+//Xal9mHjxo3q16+f7r//fl133XUqLi7W0aNHlZ6ero8//lh169bVe++9p5tuusmxTHFxsex2u6xWa6WPjhw7dkyRkZGaOXOmkpOTK7WMJNntdpWUlMhqtUo6fwSoWbNmeuGFFzRt2rRKr8fV2s6dO6dz584pNDTULdsCzCbI2wUAcK99+/Zp9OjRio2N1eeff64mTZo45k2ePFnZ2dlas2aNo+3BBx/U+vXrNW/ePE2dOtVpXQ899JCysrKUmppaajutWrXS2LFjHdMjRoxQhw4dNG/ePKcA9Pbbb6tz585KTEzUjBkzVFRUpNq1a1d6f2644QbddtttTm27du1SXFycRo4cqf/7v/9z7GNgYKACAwMrvW5XXKg/ODjYo9u5mKCgIAUF8REOuMwAUKP87W9/MyQZX3/99UX75ubmGoGBgcagQYOqtA1JxuTJk0u1N2zY0GjZsqVj+vTp00Z4eLjx/PPPG3l5eUZAQIDxzjvvVGobX3zxhSHJWLVqVZnzly9fbkgyZsyY4WhbsmSJIcnYt2+fo+3bb7814uLijAYNGhihoaFG06ZNjQkTJhiGYRj79u0zJJV6zZw50zAMw0hMTDRq165tZGdnG4MHDzbq1KljDBs2zDEvNjbWsZ0L63rhhReMuXPnGldeeaURGhpq3HjjjcYPP/zgVHufPn2MPn36lNqn36/zYrXNnDnT+ONHuN1uN5588kmjefPmRkhIiBEbG2tMnz7dOHPmjFO/2NhYY8iQIcZXX31lXHfddYbVajWaNWtmLFu2rMyxBmoirgECapiPP/5YzZs3V8+ePS/ad+3atSouLnY6kuOqEydO6MSJE2rQoIGj7aOPPlJhYaFGjx6tqKgo9e3bV++8884lb0uSbrvtNtWqVUufffZZuX2OHDmiuLg45eTk6NFHH9Wrr76qO++8U1u3bpUkRUZG6vXXX5d0/gjWP/7xD/3jH//Qrbfe6ljHuXPnFB8fr0aNGunFF1/UyJEjK6zrrbfe0iuvvKLJkydr+vTpyszM1E033aTDhw9Xaf8qU9sf3XXXXXriiSfUuXNnvfTSS+rTp49mz56t0aNHl+qbnZ2t2267TQMHDtScOXNUv359jR8/Xj/++GOV6gT8FcdPgRqkoKBAv/zyi4YNG1ap/j/99JMkqX379k7tZ8+eVUFBgWPaYrE4BRtJOnPmjI4dO+a4BmjGjBkqLi7WqFGjHH3efvtt9ezZUzExMZKk0aNH695779XRo0cVGRnp0j5eEBwcrFatWmnv3r3l9klPT9eJEyf02WefqWvXro72p556SpJUu3Zt3XbbbbrnnnvUoUOHMoOgzWbTqFGjNHv27ErVlZ2draysLF1++eWSpEGDBql79+567rnnNHfu3ErvX2Vq+71du3Zp2bJluuuuu/Tmm29Kku69915HcPviiy/Ur18/R//du3dr06ZNuuGGGyRJt99+u2JiYrRkyZJqu5MN8CaOAAE1yIXQEh4eXqX+derUcWr/9NNPFRkZ6XjFxsaWWnbRokWKjIxUo0aN1L17d3399ddKSkrSAw88IEk6fvy41q9fr4SEBMcyI0eOlMVi0XvvvefK7pVSp04dnTp1qtz59erVkyR98sknstvtLm/nnnvuqXTf4cOHO8KPJHXr1k3du3fXp59+6vL2K+PC+pOSkpzaH3roIUlyuu5Lktq2besIP9L5I06tW7fWzz//7NE6AV9BAAJqkIiICEmqMBT83oWgVFhY6NTeq1cvpaamOu7gKsuwYcOUmpqqDRs26JtvvtGxY8c0Z84cBQSc/1hZuXKl7Ha7rr32WmVnZys7O1u//vqrunfv7rbTYIWFhRWGvT59+mjkyJFKSUlRw4YNNWzYMC1ZsqTUbf0VCQoK0hVXXFHp/i1btizV1qpVK48/m2j//v0KCAjQVVdd5dQeFRWlevXqaf/+/U7tV155Zal11K9fXydOnPBonYCv4BQYUINEREQoOjpamZmZlerfpk0bSVJmZqY6duzoaI+MjNSAAQMkqdzb1q+44gpHn7JcCDm9evUqc/7PP/+s5s2bV6rOstjtdu3Zs6fU6bvfs1gs+uc//6mtW7fq448/1vr16zVx4kTNmTNHW7duLXXkqyxWq9UR6tzFYrHIKOMJJMXFxW5Zd2WUd7dcWXUBNRFHgIAa5pZbbtHevXu1ZcuWi/YdPHiwAgMD3XZE5oJ9+/YpPT1dU6ZM0apVq5xeK1euVEhIiJYvX35J2/jnP/+p3377TfHx8Rfte/311+vpp59WRkaG3nnnHf34449asWKFpMoHhsrKysoq1bZnzx6np0bXr19f+fn5pfr98ShNVWqLjY1VSUlJqe0fPnxY+fn5ZZ7GBMyMAATUMI888ohq166tu+66q8w7j/bu3auXX35Z0vnTIBMnTtTatWs1f/78MtfnyhGBC4HqkUce0W233eb0uv3229WnT59LCl27du3SAw88oPr162vy5Mnl9jtx4kSp+jt16iRJjtNgYWFhklRmIHHF6tWr9csvvzimt23bpm+++cbp2UgtWrTQTz/95PQ06127dunrr792WldVarv55pslSfPmzXNqv3Dh9ZAhQ6q0H0BNxykwoIZp0aKFli9frjvuuENXX32105Og09PTtWrVKo0fP97Rf968edq3b5/uu+8+rVixQkOHDlWjRo107Ngxff311/r444/VunXrKtXwzjvvqFOnTo67v/7oT3/6k+677z5t375dnTt3rnBdX331lc6cOaPi4mIdP35cX3/9tT766CPVrVtXH374oaKiospddtmyZXrttdc0YsQItWjRQqdOndKbb76piIgIR2CoVauW2rZtq5UrV6pVq1a67LLL1L59+wpPrVXkqquuUu/evXXPPffIZrNp3rx5atCggR555BFHn4kTJ2ru3LmKj4/XpEmTdOTIES1cuFDt2rVzuvuuKrV17NhRiYmJeuONN5Sfn68+ffpo27ZtWrZsmYYPH+50BxgA8SBEoKbas2ePcffddxtNmzY1QkJCjPDwcKNXr17Gq6++WurBeOfOnTOWLFli3HTTTcZll11mBAUFGQ0bNjT69+9vLFy40Pjtt9+c+qucByEahmF89913hiTj8ccfL7e2nJwcQ5Lx4IMPltvnwoMQL7yCg4ONyMhI48YbbzSefvpp48iRI6WW+eODELdv324kJCQYV155pWG1Wo1GjRoZt9xyi5GRkeG0XHp6utGlSxcjJCSkzAchlqWiByHOmTPHiImJMaxWq3HDDTcYu3btKrX822+/7XhgYadOnYz169eXWmdFtZX3IMSUlBSjWbNmRnBwsBETE1PhgxD/qLwHNAI1Ed8FBgAATIdrgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnwIMQylJSU6ODBgwoPD3f7Y/IBAIBnGIahU6dOKTo6+qLf4UcAKsPBgwfLfYItAADwbf/5z390xRVXVNiHAFSG8PBwSecHMCIiwsvV+De73a7PPvtMcXFxCg4O9nY5NQpj6zmMrWcwrp7D2J5XUFCgmJgYx9/xihCAynDhtFdERAQB6BLZ7XaFhYUpIiLC1P8oPYGx9RzG1jMYV89hbJ1V5vIVLoIGAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmE+TtAgD8V9NH11S6rzXQ0PPdpPbJ62UrtniwqorlPDvEa9sGAFdxBAgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJiOVwPQpk2bNHToUEVHR8tisWj16tVO8y0WS5mvF154odx1Jicnl+rfpk0bD+8JAADwJ14NQEVFRerYsaMWLFhQ5vy8vDyn1+LFi2WxWDRy5MgK19uuXTun5TZv3uyJ8gEAgJ8K8ubGBw8erMGDB5c7Pyoqymn6X//6l/r166fmzZtXuN6goKBSywIAAFzgN9cAHT58WGvWrNGkSZMu2jcrK0vR0dFq3ry57rzzTuXm5lZDhQAAwF949QhQVSxbtkzh4eG69dZbK+zXvXt3LV26VK1bt1ZeXp5SUlJ0ww03KDMzU+Hh4WUuY7PZZLPZHNMFBQWSJLvdLrvd7r6dMKEL48c4Vo410Kh83wDD6ae31MTfLe9bz2BcPYexPa8q+28xDMO7n57/P4vFog8//FDDhw8vc36bNm00cOBAvfrqq1Vab35+vmJjYzV37txyjx4lJycrJSWlVPvy5csVFhZWpe0BAADvOH36tMaMGaOTJ08qIiKiwr5+cQToq6++0u7du7Vy5coqL1uvXj21atVK2dnZ5faZPn26kpKSHNMFBQWKiYlRXFzcRQcQFbPb7UpNTdXAgQMVHBzs7XJ8Xvvk9ZXuaw0wNKtriR7PCJCtxOLBqiqWmRzvtW17Cu9bz2BcPYexPe/CGZzK8IsAtGjRInXp0kUdO3as8rKFhYXau3ev/vznP5fbx2q1ymq1lmoPDg429RvJnRjLyrEVVz3I2EosLi3nLjX598r71jMYV88x+9hWZd+9ehF0YWGhdu7cqZ07d0qS9u3bp507dzpdtFxQUKBVq1bprrvuKnMd/fv31/z58x3T06ZN05dffqmcnBylp6drxIgRCgwMVEJCgkf3BQAA+A+vHgHKyMhQv379HNMXTkMlJiZq6dKlkqQVK1bIMIxyA8zevXt17Ngxx/SBAweUkJCg48ePKzIyUr1799bWrVsVGRnpuR0BAAB+xasBqG/fvrrYNdh/+ctf9Je//KXc+Tk5OU7TK1ascEdpAACgBvOb5wABAAC4CwEIAACYDgEIAACYjl/cBg8A7tT00TUVzrcGGnq+2/nnMnnzEQO/l/PsEG+XANQoHAECAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm49UAtGnTJg0dOlTR0dGyWCxavXq10/zx48fLYrE4vQYNGnTR9S5YsEBNmzZVaGiounfvrm3btnloDwAAgD/yagAqKipSx44dtWDBgnL7DBo0SHl5eY7Xu+++W+E6V65cqaSkJM2cOVPbt29Xx44dFR8fryNHjri7fAAA4KeCvLnxwYMHa/DgwRX2sVqtioqKqvQ6586dq7vvvlsTJkyQJC1cuFBr1qzR4sWL9eijj15SvQAAoGbwagCqjI0bN6pRo0aqX7++brrpJj311FNq0KBBmX3Pnj2r7777TtOnT3e0BQQEaMCAAdqyZUu527DZbLLZbI7pgoICSZLdbpfdbnfTnpjThfFjHCvHGmhUvm+A4fTTW/zxd3uxcfaVsf09fxznP+LzwHMY2/Oqsv8WwzB84l+4xWLRhx9+qOHDhzvaVqxYobCwMDVr1kx79+7VjBkzVKdOHW3ZskWBgYGl1nHw4EFdfvnlSk9PV48ePRztjzzyiL788kt98803ZW47OTlZKSkppdqXL1+usLCwS985AADgcadPn9aYMWN08uRJRUREVNjXp48AjR492vHf11xzjTp06KAWLVpo48aN6t+/v9u2M336dCUlJTmmCwoKFBMTo7i4uIsOICpmt9uVmpqqgQMHKjg42Nvl+Lz2yesr3dcaYGhW1xI9nhEgW4nFg1VVLDM53mvbdtXFxtlXxtbf/fG9weeB5zC25104g1MZPh2A/qh58+Zq2LChsrOzywxADRs2VGBgoA4fPuzUfvjw4QqvI7JarbJaraXag4ODTf1GcifGsnJsxVX/Y2srsbi0nLv44++1suPl7bH1d+W9N/g88Byzj21V9t2vngN04MABHT9+XE2aNClzfkhIiLp06aK0tDRHW0lJidLS0pxOiQEAAHPzagAqLCzUzp07tXPnTknSvn37tHPnTuXm5qqwsFAPP/ywtm7dqpycHKWlpWnYsGG66qqrFB//38Oq/fv31/z58x3TSUlJevPNN7Vs2TL9+9//1j333KOioiLHXWEAAABePQWWkZGhfv36OaYvXIeTmJio119/Xd9//72WLVum/Px8RUdHKy4uTrNmzXI6XbV3714dO3bMMX3HHXfo6NGjeuKJJ3To0CF16tRJ69atU+PGjatvxwAAgE/zagDq27evKroJbf36i18QmpOTU6ptypQpmjJlyqWUBgAAajC/ugYIAADAHQhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdLwagDZt2qShQ4cqOjpaFotFq1evdsyz2+36n//5H11zzTWqXbu2oqOjNW7cOB08eLDCdSYnJ8tisTi92rRp4+E9AQAA/sSrAaioqEgdO3bUggULSs07ffq0tm/frscff1zbt2/XBx98oN27d+tPf/rTRdfbrl075eXlOV6bN2/2RPkAAMBPBXlz44MHD9bgwYPLnFe3bl2lpqY6tc2fP1/dunVTbm6urrzyynLXGxQUpKioKLfWCgAAag6vBqCqOnnypCwWi+rVq1dhv6ysLEVHRys0NFQ9evTQ7NmzKwxMNptNNpvNMV1QUCDp/Gk4u93ultrN6sL4MY6VYw00Kt83wHD66S3++Lu92Dj7ytj6uz++N/g88BzG9ryq7L/FMAyf+BdusVj04Ycfavjw4WXOP3PmjHr16qU2bdronXfeKXc9a9euVWFhoVq3bq28vDylpKTol19+UWZmpsLDw8tcJjk5WSkpKaXaly9frrCwMJf2BwAAVK/Tp09rzJgxOnnypCIiIirs6xcByG63a+TIkTpw4IA2btx40Z36vfz8fMXGxmru3LmaNGlSmX3KOgIUExOjY8eOVWlbKM1utys1NVUDBw5UcHCwt8vxee2T11e6rzXA0KyuJXo8I0C2EosHq6pYZnK817btqouNs6+Mrb/743uDzwPPYWzPKygoUMOGDSsVgHz+FJjdbtftt9+u/fv36/PPP69yIKlXr55atWql7OzscvtYrVZZrdZS7cHBwaZ+I7kTY1k5tuKq/7G1lVhcWs5d/PH3Wtnx8vbY+rvy3ht8HniO2ce2Kvvu088BuhB+srKytGHDBjVo0KDK6ygsLNTevXvVpEkTD1QIAAD8kVcDUGFhoXbu3KmdO3dKkvbt26edO3cqNzdXdrtdt912mzIyMvTOO++ouLhYhw4d0qFDh3T27FnHOvr376/58+c7pqdNm6Yvv/xSOTk5Sk9P14gRIxQYGKiEhITq3j0AAOCjvHoKLCMjQ/369XNMJyUlSZISExOVnJysjz76SJLUqVMnp+W++OIL9e3bV5K0d+9eHTt2zDHvwIEDSkhI0PHjxxUZGanevXtr69atioyM9OzOAAAAv+HVANS3b19VdA12Za7PzsnJcZpesWLFpZYFAABqOJ++BggAAMATCEAAAMB0fP42eACAf2r66BqnaWugoee7nX8Ok68+XiDn2SHeLgHVhCNAAADAdAhAAADAdAhAAADAdAhAAADAdFwKQD///LO76wAAAKg2LgWgq666Sv369dPbb7+tM2fOuLsmAAAAj3IpAG3fvl0dOnRQUlKSoqKi9Ne//lXbtm1zd20AAAAe4VIA6tSpk15++WUdPHhQixcvVl5ennr37q327dtr7ty5Onr0qLvrBAAAcJtLugg6KChIt956q1atWqXnnntO2dnZmjZtmmJiYjRu3Djl5eW5q04AAAC3uaQAlJGRoXvvvVdNmjTR3LlzNW3aNO3du1epqak6ePCghg0b5q46AQAA3Malr8KYO3eulixZot27d+vmm2/WW2+9pZtvvlkBAefzVLNmzbR06VI1bdrUnbUCAAC4hUsB6PXXX9fEiRM1fvx4NWnSpMw+jRo10qJFiy6pOAAAAE9wKQBlZWVdtE9ISIgSExNdWT0AAIBHuXQN0JIlS7Rq1apS7atWrdKyZcsuuSgAAABPcikAzZ49Ww0bNizV3qhRIz3zzDOXXBQAAIAnuRSAcnNz1axZs1LtsbGxys3NveSiAAAAPMmlANSoUSN9//33pdp37dqlBg0aXHJRAAAAnuRSAEpISND999+vL774QsXFxSouLtbnn3+uqVOnavTo0e6uEQAAwK1cugts1qxZysnJUf/+/RUUdH4VJSUlGjduHNcAAQAAn+dSAAoJCdHKlSs1a9Ys7dq1S7Vq1dI111yj2NhYd9cHAADgdi4FoAtatWqlVq1auasWAACAauFSACouLtbSpUuVlpamI0eOqKSkxGn+559/7pbiAAAAPMGlADR16lQtXbpUQ4YMUfv27WWxWNxdFwAAgMe4FIBWrFih9957TzfffLO76wEAAPA4l26DDwkJ0VVXXeXuWgAAAKqFSwHooYce0ssvvyzDMNxdDwAAgMe5dAps8+bN+uKLL7R27Vq1a9dOwcHBTvM/+OADtxQHAADgCS4FoHr16mnEiBHurgUAAKBauBSAlixZ4u46AAAAqo1L1wBJ0rlz57Rhwwb9/e9/16lTpyRJBw8eVGFhoduKAwAA8ASXjgDt379fgwYNUm5urmw2mwYOHKjw8HA999xzstlsWrhwobvrBAAAcBuXjgBNnTpVXbt21YkTJ1SrVi1H+4gRI5SWlua24gAAADzBpQD01Vdf6bHHHlNISIhTe9OmTfXLL79Uej2bNm3S0KFDFR0dLYvFotWrVzvNNwxDTzzxhJo0aaJatWppwIABysrKuuh6FyxYoKZNmyo0NFTdu3fXtm3bKl0TAACo+VwKQCUlJSouLi7VfuDAAYWHh1d6PUVFRerYsaMWLFhQ5vznn39er7zyihYuXKhvvvlGtWvXVnx8vM6cOVPuOleuXKmkpCTNnDlT27dvV8eOHRUfH68jR45Uui4AAFCzuRSA4uLiNG/ePMe0xWJRYWGhZs6cWaWvxxg8eLCeeuqpMm+pNwxD8+bN02OPPaZhw4apQ4cOeuutt3Tw4MFSR4p+b+7cubr77rs1YcIEtW3bVgsXLlRYWJgWL15clV0EAAA1mEsXQc+ZM0fx8fFq27atzpw5ozFjxigrK0sNGzbUu+++65bC9u3bp0OHDmnAgAGOtrp166p79+7asmWLRo8eXWqZs2fP6rvvvtP06dMdbQEBARowYIC2bNlS7rZsNptsNptjuqCgQJJkt9tlt9vdsTumdWH8GMfKsQZW/unq1gDD6ae3+OPv9mLj7CtjW9P4w7j64/tZ4rP2gqrsv0sB6IorrtCuXbu0YsUKff/99yosLNSkSZN05513Ol0UfSkOHTokSWrcuLFTe+PGjR3z/ujYsWMqLi4uc5mffvqp3G3Nnj1bKSkppdo/++wzhYWFVbV0lCE1NdXbJfiF57tVfZlZXUvcX0gVfPrpp17dvisqO87eHtuaypfH1R/fz79n9s/a06dPV7qvSwFIkoKCgjR27FhXF/cp06dPV1JSkmO6oKBAMTExiouLU0REhBcr8392u12pqakaOHBgqa9M8bT2yeurdXvVzRpgaFbXEj2eESBbicXb5dQojK1n+MO4ZibHe7sEl3jzs9aXXDiDUxkuBaC33nqrwvnjxo1zZbVOoqKiJEmHDx9WkyZNHO2HDx9Wp06dylymYcOGCgwM1OHDh53aDx8+7FhfWaxWq6xWa6n24OBgU7+R3MkbY2kr9s0PWHezlVhMs6/VjbH1DF8eV3//zDf7362q7LtLAWjq1KlO03a7XadPn1ZISIjCwsLcEoCaNWumqKgopaWlOQJPQUGBvvnmG91zzz1lLhMSEqIuXbooLS1Nw4cPl3T+jrW0tDRNmTLlkmsCAAA1g0sB6MSJE6XasrKydM899+jhhx+u9HoKCwuVnZ3tmN63b5927typyy67TFdeeaUeeOABPfXUU2rZsqWaNWumxx9/XNHR0Y5wI0n9+/fXiBEjHAEnKSlJiYmJ6tq1q7p166Z58+apqKhIEyZMcGVXAQBADeTyNUB/1LJlSz377LMaO3ZshRcc/15GRob69evnmL5wHU5iYqKWLl2qRx55REVFRfrLX/6i/Px89e7dW+vWrVNoaKhjmb179+rYsWOO6TvuuENHjx7VE088oUOHDqlTp05at25dqQujAQCAebktAEnnL4w+ePBgpfv37dtXhlH+7ZAWi0VPPvmknnzyyXL75OTklGqbMmUKp7wAAEC5XApAH330kdO0YRjKy8vT/Pnz1atXL7cUBgAA4CkuBaDfX4MjnT9SExkZqZtuuklz5sxxR10AAAAe41IAKinx3YdYAQAAXIxL3wUGAADgz1w6AvT7pyZfzNy5c13ZBAAAgMe4FIB27NihHTt2yG63q3Xr1pKkPXv2KDAwUJ07d3b0s1h880mfAADA3FwKQEOHDlV4eLiWLVum+vXrSzr/cMQJEybohhtu0EMPPeTWIgEAANzJpWuA5syZo9mzZzvCjyTVr19fTz31FHeBAQAAn+dSACooKNDRo0dLtR89elSnTp265KIAAAA8yaUANGLECE2YMEEffPCBDhw4oAMHDuj999/XpEmTdOutt7q7RgAAALdy6RqghQsXatq0aRozZozsdvv5FQUFadKkSXrhhRfcWiAAAIC7uRSAwsLC9Nprr+mFF17Q3r17JUktWrRQ7dq13VocAACAJ1zSgxDz8vKUl5enli1bqnbt2hV+sSkAAICvcCkAHT9+XP3791erVq108803Ky8vT5I0adIkboEHAAA+z6UA9OCDDyo4OFi5ubkKCwtztN9xxx1at26d24oDAADwBJeuAfrss8+0fv16XXHFFU7tLVu21P79+91SGAAAgKe4dASoqKjI6cjPBb/++qusVuslFwUAAOBJLgWgG264QW+99ZZj2mKxqKSkRM8//7z69evntuIAAAA8waVTYM8//7z69++vjIwMnT17Vo888oh+/PFH/frrr/r666/dXSMAAIBbuXQEqH379tqzZ4969+6tYcOGqaioSLfeeqt27NihFi1auLtGAAAAt6ryESC73a5BgwZp4cKF+n//7/95oiYAAACPqvIRoODgYH3//feeqAUAAKBauHQKbOzYsVq0aJG7awEAAKgWLl0Efe7cOS1evFgbNmxQly5dSn0H2Ny5c91SHAAAgCdUKQD9/PPPatq0qTIzM9W5c2dJ0p49e5z6WCwW91UHAADgAVUKQC1btlReXp6++OILSee/+uKVV15R48aNPVIcAACAJ1TpGqA/ftv72rVrVVRU5NaCAAAAPM2li6Av+GMgAgAA8AdVCkAWi6XUNT5c8wMAAPxNla4BMgxD48ePd3zh6ZkzZ/S3v/2t1F1gH3zwgfsqBAAAcLMqBaDExESn6bFjx7q1GAAAgOpQpQC0ZMkST9UBAABQbS7pImgAAAB/RAACAACmQwACAACm4/MBqGnTpo7b73//mjx5cpn9ly5dWqpvaGhoNVcNAAB8mUtfhlqdvv32WxUXFzumMzMzNXDgQI0aNarcZSIiIrR7927HNM8qAgAAv+fzASgyMtJp+tlnn1WLFi3Up0+fcpexWCyKiorydGkAAMBP+fwpsN87e/as3n77bU2cOLHCozqFhYWKjY1VTEyMhg0bph9//LEaqwQAAL7O548A/d7q1auVn5+v8ePHl9undevWWrx4sTp06KCTJ0/qxRdfVM+ePfXjjz/qiiuuKHMZm80mm83mmC4oKJAk2e122e12t+6D2VwYP2+MozWwZn9XnTXAcPoJ92FsPcMfxtVfP/O9+VnrS6qy/xbDj77RND4+XiEhIfr4448rvYzdbtfVV1+thIQEzZo1q8w+ycnJSklJKdW+fPlyhYWFuVwvAACoPqdPn9aYMWN08uRJRUREVNjXbwLQ/v371bx5c33wwQcaNmxYlZYdNWqUgoKC9O6775Y5v6wjQDExMTp27NhFBxAVs9vtSk1N1cCBAxUcHFyt226fvL5at1fdrAGGZnUt0eMZAbKVcKG/OzG2nuEP45qZHO/tElzizc9aX1JQUKCGDRtWKgD5zSmwJUuWqFGjRhoyZEiVlisuLtYPP/ygm2++udw+VqvV8QWvvxccHGzqN5I7eWMsbcW++QHrbrYSi2n2tboxtp7hy+Pq75/5Zv+7VZV994uLoEtKSrRkyRIlJiYqKMg5s40bN07Tp093TD/55JP67LPP9PPPP2v79u0aO3as9u/fr7vuuqu6ywYAAD7KL44AbdiwQbm5uZo4cWKpebm5uQoI+G+OO3HihO6++24dOnRI9evXV5cuXZSenq62bdtWZ8kAAMCH+UUAiouLU3mXKm3cuNFp+qWXXtJLL71UDVUBAAB/5RenwAAAANyJAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEwnyNsFAADgK5o+usbbJVRZzrNDvF2CX+IIEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB2fDkDJycmyWCxOrzZt2lS4zKpVq9SmTRuFhobqmmuu0aefflpN1QIAAH/h0wFIktq1a6e8vDzHa/PmzeX2TU9PV0JCgiZNmqQdO3Zo+PDhGj58uDIzM6uxYgAA4Ot8PgAFBQUpKirK8WrYsGG5fV9++WUNGjRIDz/8sK6++mrNmjVLnTt31vz586uxYgAA4OuCvF3AxWRlZSk6OlqhoaHq0aOHZs+erSuvvLLMvlu2bFFSUpJTW3x8vFavXl3hNmw2m2w2m2O6oKBAkmS322W32y9tB0zuwvh5YxytgUa1b7M6WQMMp59wH8bWMxhXz/j93yqz/82qyv5bDMPw2Xfi2rVrVVhYqNatWysvL08pKSn65ZdflJmZqfDw8FL9Q0JCtGzZMiUkJDjaXnvtNaWkpOjw4cPlbic5OVkpKSml2pcvX66wsDD37AwAAPCo06dPa8yYMTp58qQiIiIq7OvTR4AGDx7s+O8OHTqoe/fuio2N1XvvvadJkya5bTvTp093OnJUUFCgmJgYxcXFXXQAUTG73a7U1FQNHDhQwcHB1brt9snrq3V71c0aYGhW1xI9nhEgW4nF2+XUKIytZzCunuNvY5uZHO+R9V44g1MZPh2A/qhevXpq1aqVsrOzy5wfFRVV6kjP4cOHFRUVVeF6rVarrFZrqfbg4OBq/6NdU3ljLG3Fvv8h4A62Eotp9rW6Mbaewbh6jr+Mraf+HlRlvT5/EfTvFRYWau/evWrSpEmZ83v06KG0tDSnttTUVPXo0aM6ygMAAH7CpwPQtGnT9OWXXyonJ0fp6ekaMWKEAgMDHdf4jBs3TtOnT3f0nzp1qtatW6c5c+bop59+UnJysjIyMjRlyhRv7QIAAPBBPn0K7MCBA0pISNDx48cVGRmp3r17a+vWrYqMjJQk5ebmKiDgvxmuZ8+eWr58uR577DHNmDFDLVu21OrVq9W+fXtv7QIAAPBBPh2AVqxYUeH8jRs3lmobNWqURo0a5aGKAABATeDTp8AAAAA8gQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMx6e/DBW+o+mja1xazhpo6PluUvvk9bIVW9xcFQAAruEIEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB2fDkCzZ8/Wddddp/DwcDVq1EjDhw/X7t27K1xm6dKlslgsTq/Q0NBqqhgAAPgDnw5AX375pSZPnqytW7cqNTVVdrtdcXFxKioqqnC5iIgI5eXlOV779++vpooBAIA/CPJ2ARVZt26d0/TSpUvVqFEjfffdd7rxxhvLXc5isSgqKsrT5QEAAD/l0wHoj06ePClJuuyyyyrsV1hYqNjYWJWUlKhz58565pln1K5du3L722w22Ww2x3RBQYEkyW63y263u6Fy/2cNNFxbLsBw+gn3YWw9h7H1DMbVc/xtbD31t7Uq67UYhuEXo1VSUqI//elPys/P1+bNm8vtt2XLFmVlZalDhw46efKkXnzxRW3atEk//vijrrjiijKXSU5OVkpKSqn25cuXKywszG37AAAAPOf06dMaM2aMTp48qYiIiAr7+k0Auueee7R27Vpt3ry53CBTFrvdrquvvloJCQmaNWtWmX3KOgIUExOjY8eOXXQAzaJ98nqXlrMGGJrVtUSPZwTIVmJxc1Xmxth6DmPrGYyr5/jb2GYmx3tkvQUFBWrYsGGlApBfnAKbMmWKPvnkE23atKlK4UeSgoODde211yo7O7vcPlarVVartcxlg4ODq1xvTWQrvrR/ULYSyyWvA2VjbD2HsfUMxtVz/GVsPfW3tSrr9em7wAzD0JQpU/Thhx/q888/V7Nmzaq8juLiYv3www9q0qSJByoEAAD+yKePAE2ePFnLly/Xv/71L4WHh+vQoUOSpLp166pWrVqSpHHjxunyyy/X7NmzJUlPPvmkrr/+el111VXKz8/XCy+8oP379+uuu+7y2n4AAADf4tMB6PXXX5ck9e3b16l9yZIlGj9+vCQpNzdXAQH/PZB14sQJ3X333Tp06JDq16+vLl26KD09XW3btq2usgEAgI/z6QBUmeuzN27c6DT90ksv6aWXXvJQRQAAoCbw6WuAAAAAPIEABAAATIcABAAATMenrwGqqZo+usbbJQAAYGocAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbjFwFowYIFatq0qUJDQ9W9e3dt27atwv6rVq1SmzZtFBoaqmuuuUaffvppNVUKAAD8gc8HoJUrVyopKUkzZ87U9u3b1bFjR8XHx+vIkSNl9k9PT1dCQoImTZqkHTt2aPjw4Ro+fLgyMzOruXIAAOCrfD4AzZ07V3fffbcmTJigtm3bauHChQoLC9PixYvL7P/yyy9r0KBBevjhh3X11Vdr1qxZ6ty5s+bPn1/NlQMAAF/l0wHo7Nmz+u677zRgwABHW0BAgAYMGKAtW7aUucyWLVuc+ktSfHx8uf0BAID5BHm7gIocO3ZMxcXFaty4sVN748aN9dNPP5W5zKFDh8rsf+jQoXK3Y7PZZLPZHNMnT56UJP3666+y2+2ull+uoHNFbl+nrwoqMXT6dImC7AEqLrF4u5wahbH1HMbWMxhXz/G3sT1+/LhH1nvq1ClJkmEYF+3r0wGousyePVspKSml2ps1a+aFamqeMd4uoAZjbD2HsfUMxtVz/GlsG87x7PpPnTqlunXrVtjHpwNQw4YNFRgYqMOHDzu1Hz58WFFRUWUuExUVVaX+kjR9+nQlJSU5pktKSvTrr7+qQYMGslh8P0n7soKCAsXExOg///mPIiIivF1OjcLYeg5j6xmMq+cwtucZhqFTp04pOjr6on19OgCFhISoS5cuSktL0/DhwyWdDydpaWmaMmVKmcv06NFDaWlpeuCBBxxtqamp6tGjR7nbsVqtslqtTm316tW71PLxOxEREab+R+lJjK3nMLaewbh6DmOrix75ucCnA5AkJSUlKTExUV27dlW3bt00b948FRUVacKECZKkcePG6fLLL9fs2bMlSVOnTlWfPn00Z84cDRkyRCtWrFBGRobeeOMNb+4GAADwIT4fgO644w4dPXpUTzzxhA4dOqROnTpp3bp1jgudc3NzFRDw35vZevbsqeXLl+uxxx7TjBkz1LJlS61evVrt27f31i4AAAAf4/MBSJKmTJlS7imvjRs3lmobNWqURo0a5eGqUBlWq1UzZ84sdYoRl46x9RzG1jMYV89hbKvOYlTmXjEAAIAaxKcfhAgAAOAJBCAAAGA6BCAAAGA6BCAAAGA6BCBUi2effVYWi8XpAZVwTXJysiwWi9OrTZs23i6rRvjll180duxYNWjQQLVq1dI111yjjIwMb5fl95o2bVrqPWuxWDR58mRvl+b3iouL9fjjj6tZs2aqVauWWrRooVmzZlXqu7DMzi9ug4d/+/bbb/X3v/9dHTp08HYpNUa7du20YcMGx3RQEP+UL9WJEyfUq1cv9evXT2vXrlVkZKSysrJUv359b5fm97799lsVFxc7pjMzMzVw4EAeV+IGzz33nF5//XUtW7ZM7dq1U0ZGhiZMmKC6devq/vvv93Z5Po1PTXhUYWGh7rzzTr355pt66qmnvF1OjREUFFTh99uh6p577jnFxMRoyZIljja+ENk9IiMjnaafffZZtWjRQn369PFSRTVHenq6hg0bpiFDhkg6f7Tt3Xff1bZt27xcme/jFBg8avLkyRoyZIgGDBjg7VJqlKysLEVHR6t58+a68847lZub6+2S/N5HH32krl27atSoUWrUqJGuvfZavfnmm94uq8Y5e/as3n77bU2cOJEvm3aDnj17Ki0tTXv27JEk7dq1S5s3b9bgwYO9XJnv4wgQPGbFihXavn27vv32W2+XUqN0795dS5cuVevWrZWXl6eUlBTdcMMNyszMVHh4uLfL81s///yzXn/9dSUlJWnGjBn69ttvdf/99yskJESJiYneLq/GWL16tfLz8zV+/Hhvl1IjPProoyooKFCbNm0UGBio4uJiPf3007rzzju9XZrPIwDBI/7zn/9o6tSpSk1NVWhoqLfLqVF+/392HTp0UPfu3RUbG6v33ntPkyZN8mJl/q2kpERdu3bVM888I0m69tprlZmZqYULFxKA3GjRokUaPHiwoqOjvV1KjfDee+/pnXfe0fLly9WuXTvt3LlTDzzwgKKjo3nfXgQBCB7x3Xff6ciRI+rcubOjrbi4WJs2bdL8+fNls9kUGBjoxQprjnr16qlVq1bKzs72dil+rUmTJmrbtq1T29VXX63333/fSxXVPPv379eGDRv0wQcfeLuUGuPhhx/Wo48+qtGjR0uSrrnmGu3fv1+zZ88mAF0EAQge0b9/f/3www9ObRMmTFCbNm30P//zP4QfNyosLNTevXv15z//2dul+LVevXpp9+7dTm179uxRbGyslyqqeZYsWaJGjRo5LtjFpTt9+rQCApwv5w0MDFRJSYmXKvIfBCB4RHh4uNq3b+/UVrt2bTVo0KBUO6pm2rRpGjp0qGJjY3Xw4EHNnDlTgYGBSkhI8HZpfu3BBx9Uz5499cwzz+j222/Xtm3b9MYbb+iNN97wdmk1QklJiZYsWaLExEQe2+BGQ4cO1dNPP60rr7xS7dq1044dOzR37lxNnDjR26X5PN6FgJ85cOCAEhISdPz4cUVGRqp3797aunVrqVuNUTXXXXedPvzwQ02fPl1PPvmkmjVrpnnz5nExqZts2LBBubm5/GF2s1dffVWPP/647r33Xh05ckTR0dH661//qieeeMLbpfk8i8HjIgEAgMnwHCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAfufQoUO677771Lx5c1mtVsXExGjo0KFKS0tz9NmxY4fuuOMONWnSRFarVbGxsbrlllv08ccf68LzX3NycmSxWByvBg0aKC4uTjt27HDa3pYtWxQYGMh3WAE1CAEIgF/JyclRly5d9Pnnn+uFF17QDz/8oHXr1qlfv36aPHmyJOlf//qXrr/+ehUWFmrZsmX697//rXXr1mnEiBF67LHHdPLkSad1btiwQXl5eVq/fr0KCws1ePBg5efnO+YvWrRI9913nzZt2qSDBw9W5+4C8BC+CgOAX7n55pv1/fffa/fu3apdu7bTvPz8fAUHBys2NlY33nijPvjggzLXYRiGLBaLcnJy1KxZM+3YsUOdOnWSJKWnp6tXr15at26d4uPjVVhYqCZNmigjI0MzZ85Uhw4dNGPGDE/vJgAP4wgQAL/x66+/at26dZo8eXKp8CNJ9erV02effabjx4/rkUceKXc9Foul3Hm1atWSJJ09e1aS9N5776lNmzZq3bq1xo4dq8WLF4v/bwT8HwEIgN/Izs6WYRhq06ZNuX327NkjSWrdurWj7dtvv1WdOnUcr08++aTMZfPz8zVr1izVqVNH3bp1k3T+9NfYsWMlSYMGDdLJkyf15ZdfumuXAHgJAQiA33D1yEuHDh20c+dO7dy5U0VFRTp37pzT/J49e6pOnTqqX7++du3apZUrV6px48bavXu3tm3bpoSEBElSUFCQ7rjjDi1atOiS9wWAdwV5uwAAqKyWLVvKYrHop59+qrCPJO3evVvXX3+9JMlqteqqq64qd5mVK1eqbdu2atCggerVq+doX7Rokc6dO6fo6GhHm2EYslqtmj9/vurWrXuJewTAWzgCBMBvXHbZZYqPj9eCBQtUVFRUan5+fr7i4uJ02WWX6bnnnqv0emNiYtSiRQun8HPu3Dm99dZbmjNnjuPo0c6dO7Vr1y5FR0fr3XffdccuAfASAhAAv7JgwQIVFxerW7duev/995WVlaV///vfeuWVV9SjRw/VqVNH//u//6s1a9ZoyJAhWr9+vX7++Wd9//33ev755yVJgYGBF93OJ598ohMnTmjSpElq376902vkyJGcBgP8HAEIgF9p3ry5tm/frn79+umhhx5S+/btNXDgQKWlpen111+XJI0YMULp6ekKCwvTuHHj1Lp1a9100036/PPPtWLFCt1yyy0X3c6iRYs0YMCAMk9zjRw5UhkZGfr+++/dvn8AqgfPAQIAAKbDESAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6/x8jtoIPCU4JNQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "