diff --git a/Modules/Prelims/EpiComplements.v b/Modules/Prelims/EpiComplements.v index f88c5c7..7224782 100644 --- a/Modules/Prelims/EpiComplements.v +++ b/Modules/Prelims/EpiComplements.v @@ -175,7 +175,7 @@ Lemma isEpi_horcomp_pw (B : category)(C D : category) (G H : functor B C) (G' H' : functor C D) (f : nat_trans G H) (f':nat_trans G' H') : (∏ x, isEpi (f' x)) - -> (∏ x, isEpi ((# H')%Cat (f x))) + -> (∏ x, isEpi ((# H') (f x))) -> ∏ x, isEpi (horcomp f f' x). Proof. intros epif' epif. @@ -189,7 +189,7 @@ Lemma isEpi_horcomp_pw2 (B : category)(C D : category) (G H : functor B C) (G' H' : functor C D) (f : nat_trans G H) (f':nat_trans G' H') : (∏ x, isEpi (f' x)) - -> (∏ x, isEpi ((# G')%Cat (f x))) + -> (∏ x, isEpi ((# G') (f x))) -> ∏ x, isEpi (horcomp f f' x). Proof. intros epif epif'. @@ -211,7 +211,7 @@ If the source category B is Set, then with the axiom of choice every epimorphism thus absolute (i.e. any functor preserves epis). *) Definition preserves_Epi {B C : precategory} (F : functor B C) : UU := - ∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f)%Cat. + ∏ a b (f : B ⟦a , b⟧), isEpi f -> isEpi (# F f). (** Functor from Set preserves epimorphisms because thanks to the axiom of choice, any set epimorphism is absolute *) diff --git a/Modules/Prelims/lib.v b/Modules/Prelims/lib.v index 32fdd5d..9aa4609 100644 --- a/Modules/Prelims/lib.v +++ b/Modules/Prelims/lib.v @@ -137,9 +137,9 @@ Qed. (** Same as [nat_trans_comp_pointwise], but with B = A · A' *) Definition nat_trans_comp_pointwise' : - ∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ])%Cat) - (A : ([C, C' , _] ⟦ F, G ⟧)%Cat) (A' : ([C, C' , _] ⟦ G, H ⟧)%Cat) (a : C), - ((A : nat_trans _ _) a · (A' : nat_trans _ _) a)%Cat = (A · A' : nat_trans _ _)%Cat a + ∏ (C : precategory) (C' : category) (F G H : ([C, C' , _ ])) + (A : ([C, C' , _] ⟦ F, G ⟧)) (A' : ([C, C' , _] ⟦ G, H ⟧)) (a : C), + ((A : nat_trans _ _) a · (A' : nat_trans _ _) a) = (A · A' : nat_trans _ _) a := fun C C' F G H A A' => @nat_trans_comp_pointwise C C' (homset_property C') F G H A A' _ (idpath _).