diff --git a/TypeTheory/Auxiliary/SetsAndPresheaves.v b/TypeTheory/Auxiliary/SetsAndPresheaves.v index f01af713..7fedfd6c 100644 --- a/TypeTheory/Auxiliary/SetsAndPresheaves.v +++ b/TypeTheory/Auxiliary/SetsAndPresheaves.v @@ -114,7 +114,7 @@ Defined. Lemma yy_natural {C : category} (F : preShv C) (c : C) (A : F $p c) (c' : C) (f : C⟦c', c⟧) - : (@yy C F c') (# (F : C^op ⟶ HSET_univalent_category) f A) = # (yoneda C) f · (@yy C F c) A. + : (@yy C F c') (#p F f A) = # (yoneda C) f · (@yy C F c) A. Proof. apply (toforallpaths (is_natural_yoneda_iso_inv _ F _ _ f)). Qed. @@ -144,10 +144,8 @@ Defined. Lemma transportf_yy {C : category} (F : preShv C) (c c' : C) (A : F $p c) (e : c = c') - : (@yy C F c') - (@transportf C^op (λ d : C^op, ((F : preShv C) : C^op ⟶ HSET_univalent_category) d : hSet) - c c' e A) = - @transportf C (λ d : C, preShv C ⟦ yoneda C d, F ⟧) c c' e ((@yy C F c) A). + : (@yy C F c') (transportf (fun d => F $p d) e A) + = transportf (fun d => preShv C ⟦ yoneda _ d, F⟧) e (@yy C F c A). Proof. induction e. apply idpath. diff --git a/TypeTheory/TypeConstructions/SplTCwF_TypeFormers.v b/TypeTheory/TypeConstructions/SplTCwF_TypeFormers.v index 04bcf843..fb2596a8 100644 --- a/TypeTheory/TypeConstructions/SplTCwF_TypeFormers.v +++ b/TypeTheory/TypeConstructions/SplTCwF_TypeFormers.v @@ -85,7 +85,7 @@ Definition var_commut {Γ} (A : Ty Γ : hSet) : p _ (var' A) = A ⌊pi A⌋:= pp Definition var {Γ} (A : Ty Γ : hSet) : tm (A⌊pi A⌋) := (var' A,, var_commut A). Definition Yo_var_commut {Γ} (A : Ty Γ : hSet) - : (# (yoneda C) (@pi Γ A) ;; (@yy C Ty Γ) A) = ((@yy C Tm (ext Γ A)) (@var Γ A) ;; p) + : (# Yo (pi A) ;; (@yy C Ty Γ) A) = ((@yy C Tm (ext Γ A)) (var A) ;; p) := term_fun_str_square_comm (var A). Definition term_pullback {Γ} (A : Ty Γ : hSet) : isPullback (Yo_var_commut A) @@ -173,19 +173,17 @@ End Ty_Tm_lemmas. Section term_substitution. Lemma Subproof_γ {Γ : C} {A : Ty Γ : hSet} (a : tm A) - : (@identity (preShv C) ((yoneda C) Γ) ;; (@yy C Ty Γ) A) = ((@yy C Tm Γ) a ;; p). + : (identity (Yo Γ) ;; (@yy C Ty Γ) A) = ((@yy C Tm Γ) a ;; p). Proof. apply pathsinv0, (pathscomp0(yy_comp_nat_trans Tm Ty p Γ a)) ,pathsinv0, (pathscomp0(id_left _ )), ((maponpaths yy) (!(pr2 a))). Qed. -Definition γ {Γ : C} {A : Ty Γ : hSet} (a : tm A) : (preShv C)⟦Yo Γ,Yo (Γ¤A)⟧. -Proof. - exact(map_into_Pb (term_pullback A) (identity _) (yy a) (Subproof_γ a)). -Defined. +Definition γ {Γ : C} {A : Ty Γ : hSet} (a : tm A) : (preShv C)⟦Yo Γ,Yo (Γ¤A)⟧ + := map_into_Pb (term_pullback A) (identity _) (@yy C Tm Γ a) (Subproof_γ a). Lemma γ_pull {Γ : C} {A : Ty Γ : hSet} (a : tm A) - : (@γ Γ A a ;; (@yy C Tm (ext Γ A)) (@var Γ A)) = (@yy C Tm Γ) a. + : (γ a ;; (@yy C Tm (ext Γ A)) (var A)) = (@yy C Tm Γ) a. Proof. apply Pb_map_commutes_2. Qed. @@ -238,11 +236,10 @@ Proof. Qed. Lemma γPullback1 {Γ : C} (A : Ty Γ : hSet) - : (@γ (ext Γ A) (@reind_ty Γ (ext Γ A) A (@pi Γ A)) (@var Γ A) ;; - # (yoneda C : C ⟶ preShv C) (@q Γ (ext Γ A) A (@pi Γ A)) ;; - (@yy C Tm (ext Γ A)) (@var Γ A)) = - (@identity [C^op, SET] (yoneda C (ext Γ A)) ;; (@yy C Tm (ext Γ A)) - (@var Γ A)). + : (@γ (ext Γ A) (reind_ty A (pi A)) (var A) + ;; # Yo (q A (pi A)) + ;; (@yy C Tm (ext Γ A)) (var A)) + = (identity _) ;; (@yy C Tm (ext Γ A)) (var A). Proof. rewrite id_left. assert (γ (var A) ;; yy (var (A ⌊pi A⌋)) = yy(var A)) by apply (γ_pull (var A)). @@ -662,10 +659,8 @@ Section Familly_Of_Types. Definition DepTypesType {Γ : C} {A : Ty Γ : hSet} (B : Ty(Γ¤A) : hSet) (a : tm A) - : Ty Γ : hSet. -Proof. - exact((γ a;;yy B : nat_trans _ _) Γ (identity Γ)). -Defined. + : Ty Γ : hSet + := (γ a ;; (@yy C Ty (ext Γ A) B) : nat_trans _ _) Γ (identity Γ). Lemma DepTypesType_eq {Γ : C} {A : Ty Γ : hSet} (B : Ty(Γ¤A) : hSet) (a : tm A) : DepTypesType B a = B ⌊a⌋. @@ -675,10 +670,8 @@ Qed. Definition DepTypesElem_pr1 {Γ : C} {A : Ty Γ : hSet} {B : Ty(Γ¤A) : hSet} (b : tm B) (a : tm A) - : Tm Γ : hSet. -Proof. - exact((γ a;;yy b : nat_trans _ _) Γ (identity Γ)). -Defined. + : Tm Γ : hSet + := (γ a ;; (@yy C Tm (ext Γ A)) b : nat_trans _ _) Γ (identity Γ). Lemma DepTypesComp {Γ : C} { A : Ty Γ : hSet} {B : Ty(Γ¤A) : hSet} (b : tm B) (a : tm A)